Richard Feynman quotes

Richard Feynman photo
170   6

Richard Feynman

Birthdate: 11. May 1918
Date of death: 15. February 1988
Other names: Richard Feynman Philips, Richard Phillips Feynman, Ричард Филлипс Фейнман

Advertisement

Richard Phillips Feynman, ForMemRS was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics for which he proposed the parton model. For contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga.

Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal Physics World, he was ranked as one of the ten greatest physicists of all time.He assisted in the development of the atomic bomb during World War II and became known to a wide public in the 1980s as a member of the Rogers Commission, the panel that investigated the Space Shuttle Challenger disaster. Along with his work in theoretical physics, Feynman has been credited with pioneering the field of quantum computing and introducing the concept of nanotechnology. He held the Richard C. Tolman professorship in theoretical physics at the California Institute of Technology.

Feynman was a keen popularizer of physics through both books and lectures, including a 1959 talk on top-down nanotechnology called There's Plenty of Room at the Bottom and the three-volume publication of his undergraduate lectures, The Feynman Lectures on Physics. Feynman also became known through his semi-autobiographical books Surely You're Joking, Mr. Feynman! and What Do You Care What Other People Think?, and books written about him such as Tuva or Bust! by Ralph Leighton and the biography Genius: The Life and Science of Richard Feynman by James Gleick.

Works

Quotes Richard Feynman

„I learned very early the difference between knowing the name of something and knowing something.“

—  Richard Feynman, book What Do You Care What Other People Think?
What Do You Care What Other People Think? (1988), Context: You can know the name of that bird in all the languages of the world, but when you're finished, you'll know absolutely nothing whatever about the bird. You'll only know about humans in different places, and what they call the bird. … I learned very early the difference between knowing the name of something and knowing something. "The Making of a Scientist," p. 14 <!-- Feynman used variants of this bird story repeatedly: (1) "What is Science?", presented at the fifteenth annual meeting of the National Science Teachers Association, in New York City (1966) published in The Physics Teacher, volume 7, issue 6 (1969), p. 313-320. (2) Interview for the BBC TV Horizon program "The Pleasure of Finding Things Out" (1981), published in Christopher Sykes, No Ordinary Genius: The Illustrated Richard Feynman (1994), p. 27. -->

„Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.“

—  Richard Feynman
The Value of Science (1955), Context: The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think. When a scientist doesn’t know the answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of what the result is going to be, he is still in some doubt. We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain. Now, we scientists are used to this, and we take it for granted that it is perfectly consistent to be unsure, that it is possible to live and not know. But I don’t know whether everyone realizes this is true. Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.

Advertisement

„The real problem in speech is not precise language. The problem is clear language.“

—  Richard Feynman
Context: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished. " New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14 Paraphrased as "Precise language is not the problem. Clear language is the problem."

„It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.“

—  Richard Feynman
Context: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished. " New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14 Paraphrased as "Precise language is not the problem. Clear language is the problem."

„We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation.“

—  Richard Feynman, book The Character of Physical Law
The Character of Physical Law (1965), Context: Now we have a problem. We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation. This doesn't happen in mathematics, that the theorems come out in places where they're not supposed to be! chapter 2, “ The Relation of Mathematics to Physics http://www.youtube.com/watch?v=M9ZYEb0Vf8U” referring to the law of conservation of angular momentum

„The method of guessing the equation seems to be a pretty effective way of guessing new laws“

—  Richard Feynman, book The Character of Physical Law
The Character of Physical Law (1965), Context: …Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws. This shows again that mathematics is a deep way of expressing nature, and any attempt to express nature in philosophical principles, or in seat-of-the-pants mechanical feelings, is not an efficient way.

„From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics.“

—  Richard Feynman
Context: From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade. volume II; lecture 1, "Electromagnetism"; section 1-6, "Electromagnetism in science and technology"; p. 1-11

„Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?"“

—  Richard Feynman, book What Do You Care What Other People Think?
What Do You Care What Other People Think? (1988), Context: Doubting the great Descartes … was a reaction I learned from my father: Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?" "What Do You Care What Other People Think?", p. 28-29

„Theoretically, planning may be good. But nobody has ever figured out the cause of government stupidity — and until they do (and find the cure), all ideal plans will fall into quicksand.“

—  Richard Feynman, book What Do You Care What Other People Think?
What Do You Care What Other People Think? (1988), Context: The real question of government versus private enterprise is argued on too philosophical and abstract a basis. Theoretically, planning may be good. But nobody has ever figured out the cause of government stupidity — and until they do (and find the cure), all ideal plans will fall into quicksand. (From a 1963 letter to his wife Gweneth, written while attending a gravity conference in Communist-era Warsaw.) "Letters, Photos, and Drawings," p. 90-91

„There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery and awe of a flower. It only adds. I don't understand how it subtracts.“

—  Richard Feynman, book What Do You Care What Other People Think?
What Do You Care What Other People Think? (1988), Context: I have a friend who's an artist, and he sometimes takes a view which I don't agree with. He'll hold up a flower and say, "Look how beautiful it is," and I'll agree. But then he'll say, "I, as an artist, can see how beautiful a flower is. But you, as a scientist, take it all apart and it becomes dull." I think he's kind of nutty. … There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery and awe of a flower. It only adds. I don't understand how it subtracts. "The Making of a Scientist," p. 11: video http://www.youtube.com/watch?v=NEwUwWh5Xs4&t=26s

Help us translate English quotes

Discover interesting quotes and translate them.

Start translating

„Mathematics is not just a language. Mathematics is a language plus reasoning.“

—  Richard Feynman, book The Character of Physical Law
The Character of Physical Law (1965), Context: Mathematics is not just a language. Mathematics is a language plus reasoning. It's like a language plus logic. Mathematics is a tool for reasoning. It's, in fact, a big collection of the results of some person's careful thought and reasoning. By mathematics, it is possible to connect one statement to another. chapter 2, “The Relation of Mathematics to Physics”

„For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.“

—  Richard Feynman
Rogers Commission Report (1986), Context: Let us make recommendations to ensure that NASA officials deal in a world of reality in understanding technological weaknesses and imperfections well enough to be actively trying to eliminate them. They must live in reality in comparing the costs and utility of the Shuttle to other methods of entering space. And they must be realistic in making contracts, in estimating costs, and the difficulty of the projects. Only realistic flight schedules should be proposed, schedules that have a reasonable chance of being met. If in this way the government would not support them, then so be it. NASA owes it to the citizens from whom it asks support to be frank, honest, and informative, so that these citizens can make the wisest decisions for the use of their limited resources. For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.

„It appears that there are enormous differences of opinion as to the probability of a failure with loss of vehicle and of human life.“

—  Richard Feynman
Rogers Commission Report (1986), Context: It appears that there are enormous differences of opinion as to the probability of a failure with loss of vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher figures come from the working engineers, and the very low figures from management. What are the causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What is the cause of management's fantastic faith in the machinery?" We have also found that certification criteria used in Flight Readiness Reviews often develop a gradually decreasing strictness. The argument that the same risk was flown before without failure is often accepted as an argument for the safety of accepting it again. Because of this, obvious weaknesses are accepted again and again, sometimes without a sufficiently serious attempt to remedy them, or to delay a flight because of their continued presence.

„In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.“

—  Richard Feynman
Rogers Commission Report (1986), Context: The acceptance and success of these flights is taken as evidence of safety. But erosion and blow-by are not what the design expected. They are warnings that something is wrong. The equipment is not operating as expected, and therefore there is a danger that it can operate with even wider deviations in this unexpected and not thoroughly understood way. The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next. The origin and consequences of the erosion and blow-by were not understood. They did not occur equally on all flights and all joints; sometimes more, and sometimes less. Why not sometime, when whatever conditions determined it were right, still more leading to catastrophe? In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.

„It is not unscientific to make a guess, although many people who are not in science think it is.“

—  Richard Feynman, book The Character of Physical Law
The Character of Physical Law (1965), Context: It is not unscientific to make a guess, although many people who are not in science think it is. Some years ago I had a conversation with a layman about flying saucers — because I am scientific I know all about flying saucers! I said “I don’t think there are flying saucers”. So my antagonist said, “Is it impossible that there are flying saucers? Can you prove that it’s impossible?” “No”, I said, “I can’t prove it’s impossible. It’s just very unlikely”. At that he said, “You are very unscientific. If you can’t prove it impossible then how can you say that it’s unlikely?” But that is the way that is scientific. It is scientific only to say what is more likely and what less likely, and not to be proving all the time the possible and impossible. To define what I mean, I might have said to him, "Listen, I mean that from my knowledge of the world that I see around me, I think that it is much more likely that the reports of flying saucers are the results of the known irrational characteristics of terrestrial intelligence than of the unknown rational efforts of extra-terrestrial intelligence." It is just more likely. That is all. chapter 7, “Seeking New Laws,” p. 165-166: video http://www.youtube.com/watch?v=-2NnquxdWFk&t=37m21s

„The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next.“

—  Richard Feynman
Rogers Commission Report (1986), Context: The acceptance and success of these flights is taken as evidence of safety. But erosion and blow-by are not what the design expected. They are warnings that something is wrong. The equipment is not operating as expected, and therefore there is a danger that it can operate with even wider deviations in this unexpected and not thoroughly understood way. The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next. The origin and consequences of the erosion and blow-by were not understood. They did not occur equally on all flights and all joints; sometimes more, and sometimes less. Why not sometime, when whatever conditions determined it were right, still more leading to catastrophe? In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.

„Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam egestas wisi a erat. Morbi imperdiet, mauris ac auctor dictum.“

Today anniversaries
Johnny Cash photo
Johnny Cash50
American singer-songwriter 1932 - 2003
Emile Coué photo
Emile Coué9
French psychologist and pharmacist 1857 - 1926
Bill Hicks photo
Bill Hicks98
American comedian 1961 - 1994
Arsène Houssaye photo
Arsène Houssaye5
French writer 1814 - 1896
Another 66 today anniversaries
Similar authors
Max Planck photo
Max Planck28
German theoretical physicist
Michio Kaku photo
Michio Kaku18
American theoretical physicist, futurist and author
Werner Heisenberg photo
Werner Heisenberg41
German theoretical physicist
Robert Oppenheimer photo
Robert Oppenheimer25
American theoretical physicist and professor of physics
Stephen Hawking photo
Stephen Hawking121
British theoretical physicist, cosmologist, and author