Richard Feynman Quotes

Richard Phillips Feynman, ForMemRS was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics for which he proposed the parton model. For contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga.

Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal Physics World, he was ranked as one of the ten greatest physicists of all time.He assisted in the development of the atomic bomb during World War II and became known to a wide public in the 1980s as a member of the Rogers Commission, the panel that investigated the Space Shuttle Challenger disaster. Along with his work in theoretical physics, Feynman has been credited with pioneering the field of quantum computing and introducing the concept of nanotechnology. He held the Richard C. Tolman professorship in theoretical physics at the California Institute of Technology.

Feynman was a keen popularizer of physics through both books and lectures, including a 1959 talk on top-down nanotechnology called There's Plenty of Room at the Bottom and the three-volume publication of his undergraduate lectures, The Feynman Lectures on Physics. Feynman also became known through his semi-autobiographical books Surely You're Joking, Mr. Feynman! and What Do You Care What Other People Think?, and books written about him such as Tuva or Bust! by Ralph Leighton and the biography Genius: The Life and Science of Richard Feynman by James Gleick. Wikipedia  

✵ 11. May 1918 – 15. February 1988   •   Other names Richard Feynman Philips, Richard Phillips Feynman, Ричард Филлипс Фейнман
Richard Feynman photo

Works

Richard Feynman: 181   quotes 30   likes

Famous Richard Feynman Quotes

“We are not to tell nature what she’s gotta be. … She's always got better imagination than we have.”

Sir Douglas Robb Lectures, University of Auckland (1979); lecture 1, "Photons: Corpuscles of Light" http://www.youtube.com/watch?v=eLQ2atfqk2c&t=48m01s

“Einstein was a giant. His head was in the clouds, but his feet were on the ground. But those of us who are not that tall have to choose!”

recalled by Carver Mead in Collective Electrodynamics: Quantum Foundations of Electromagnetism (2002), p. xix

“We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation.”

Source: The Character of Physical Law (1965), chapter 2, “ The Relation of Mathematics to Physics http://www.youtube.com/watch?v=M9ZYEb0Vf8U” referring to the law of conservation of angular momentum
Context: Now we have a problem. We can deduce, often, from one part of physics like the law of gravitation, a principle which turns out to be much more valid than the derivation. This doesn't happen in mathematics, that the theorems come out in places where they're not supposed to be!

“What I cannot create, I do not understand.Know how to solve every problem that has been solved.”

on his blackboard at the time of death in February 1988; from a photo in the Caltech archives http://archives.caltech.edu/pictures/1.10-29.jpg

Richard Feynman Quotes about understanding

“God was always invented to explain mystery. God is always invented to explain those things that you do not understand.”

interview published in Superstrings: A Theory of Everything? (1988) edited by Paul C. W. Davies and Julian R. Brown, p. 208-209
Context: God was always invented to explain mystery. God is always invented to explain those things that you do not understand. Now, when you finally discover how something works, you get some laws which you're taking away from God; you don't need him anymore. But you need him for the other mysteries. So therefore you leave him to create the universe because we haven't figured that out yet; you need him for understanding those things which you don't believe the laws will explain, such as consciousness, or why you only live to a certain length of time — life and death — stuff like that. God is always associated with those things that you do not understand. Therefore I don't think that the laws can be considered to be like God because they have been figured out.

Richard Feynman Quotes about the trip

“The electron is a theory we use; it is so useful in understanding the way nature works that we can almost call it real.”

Part 2: "The Princeton Years", "A Map of the Cat?", p. 70
Surely You're Joking, Mr. Feynman! (1985)

“The fact that you are not sure means that it is possible that there is another way someday.”

lecture II: "The Uncertainty of Values"
The Meaning of It All (1999)

“I don't know what's the matter with people: they don't learn by understanding; they learn by some other way — by rote or something. Their knowledge is so fragile!”

Part 1: "From Rockaway to MIT", "Who Stole the Door?", p. 36-37
Surely You're Joking, Mr. Feynman! (1985)

Richard Feynman: Trending quotes

“Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.”

The Value of Science (1955)
Context: The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think. When a scientist doesn’t know the answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of what the result is going to be, he is still in some doubt. We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain. Now, we scientists are used to this, and we take it for granted that it is perfectly consistent to be unsure, that it is possible to live and not know. But I don’t know whether everyone realizes this is true. Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.

“Mathematics is not just a language. Mathematics is a language plus reasoning.”

Source: The Character of Physical Law (1965), chapter 2, “The Relation of Mathematics to Physics”
Context: Mathematics is not just a language. Mathematics is a language plus reasoning. It's like a language plus logic. Mathematics is a tool for reasoning. It's, in fact, a big collection of the results of some person's careful thought and reasoning. By mathematics, it is possible to connect one statement to another.

Richard Feynman Quotes

“The real problem in speech is not precise language. The problem is clear language.”

" New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14
Paraphrased as "Precise language is not the problem. Clear language is the problem."
Context: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished.

“It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.”

" New Textbooks for the "New" Mathematics http://calteches.library.caltech.edu/2362/1/feynman.pdf", Engineering and Science volume 28, number 6 (March 1965) p. 9-15 at p. 14
Paraphrased as "Precise language is not the problem. Clear language is the problem."
Context: The real problem in speech is not precise language. The problem is clear language. The desire is to have the idea clearly communicated to the other person. It is only necessary to be precise when there is some doubt as to the meaning of a phrase, and then the precision should be put in the place where the doubt exists. It is really quite impossible to say anything with absolute precision, unless that thing is so abstracted from the real world as to not represent any real thing.Pure mathematics is just such an abstraction from the real world, and pure mathematics does have a special precise language for dealing with its own special and technical subjects. But this precise language is not precise in any sense if you deal with real objects of the world, and it is only pedantic and quite confusing to use it unless there are some special subtleties which have to be carefully distinguished.

“The old problems, such as the relation of science and religion, are still with us, and I believe present as difficult dilemmas as ever, but they are not often publicly discussed because of the limitations of specialization.”

remarks (2 May 1956) at a Caltech YMCA lunch forum http://calteches.library.caltech.edu/49/2/Religion.htm
Context: In this age of specialization men who thoroughly know one field are often incompetent to discuss another. The great problems of the relations between one and another aspect of human activity have for this reason been discussed less and less in public. When we look at the past great debates on these subjects we feel jealous of those times, for we should have liked the excitement of such argument. The old problems, such as the relation of science and religion, are still with us, and I believe present as difficult dilemmas as ever, but they are not often publicly discussed because of the limitations of specialization.

“I have a limited intelligence and I've used it in a particular direction.”

" The Pleasure of Finding Things Out http://www.worldcat.org/wcpa/servlet/DCARead?standardNo=0738201081&standardNoType=1&excerpt=true", p. 2-3, transcript of BBC TV Horizon interview (1981): video http://www.youtube.com/watch?v=NEwUwWh5Xs4&t=2m53s
The Pleasure of Finding Things Out (1999)
Context: I've always been rather very one-sided about the science, and when I was younger, I concentrated almost all my effort on it. I didn't have time to learn, and I didn't have much patience for what's called the humanities; even though in the university there were humanities that you had to take, I tried my best to avoid somehow to learn anything and to work on it. It's only afterwards, when I've gotten older and more relaxed that I've spread out a little bit — I've learned to draw, and I read a little bit, but I'm really still a very one-sided person and don't know a great deal. I have a limited intelligence and I've used it in a particular direction.

“I learned very early the difference between knowing the name of something and knowing something.”

"The Making of a Scientist," p. 14 <!-- Feynman used variants of this bird story repeatedly: (1) "What is Science?", presented at the fifteenth annual meeting of the National Science Teachers Association, in New York City (1966) published in The Physics Teacher, volume 7, issue 6 (1969), p. 313-320. (2) Interview for the BBC TV Horizon program "The Pleasure of Finding Things Out" (1981), published in Christopher Sykes, No Ordinary Genius: The Illustrated Richard Feynman (1994), p. 27. -->
What Do You Care What Other People Think? (1988)
Context: You can know the name of that bird in all the languages of the world, but when you're finished, you'll know absolutely nothing whatever about the bird. You'll only know about humans in different places, and what they call the bird. … I learned very early the difference between knowing the name of something and knowing something.

“On the infrequent occasions when I have been called upon in a formal place to play the bongo drums, the introducer never seems to find it necessary to mention that I also do theoretical physics.”

statement after an introduction mentioning that he played bongo drums; Messenger Lectures at Cornell University, p. 13
The Character of Physical Law (1965)

“It is not unscientific to make a guess, although many people who are not in science think it is.”

Source: The Character of Physical Law (1965), chapter 7, “Seeking New Laws,” p. 165-166: video http://www.youtube.com/watch?v=-2NnquxdWFk&t=37m21s
Context: It is not unscientific to make a guess, although many people who are not in science think it is. Some years ago I had a conversation with a layman about flying saucers — because I am scientific I know all about flying saucers! I said “I don’t think there are flying saucers”. So my antagonist said, “Is it impossible that there are flying saucers? Can you prove that it’s impossible?” “No”, I said, “I can’t prove it’s impossible. It’s just very unlikely”. At that he said, “You are very unscientific. If you can’t prove it impossible then how can you say that it’s unlikely?” But that is the way that is scientific. It is scientific only to say what is more likely and what less likely, and not to be proving all the time the possible and impossible. To define what I mean, I might have said to him, "Listen, I mean that from my knowledge of the world that I see around me, I think that it is much more likely that the reports of flying saucers are the results of the known irrational characteristics of terrestrial intelligence than of the unknown rational efforts of extra-terrestrial intelligence." It is just more likely. That is all.

“It is important to realize that in physics today, we have no knowledge what energy is.”

volume I; lecture 4, "Conservation of Energy"; section 4-1, "What is energy?"; p. 4-2
The Feynman Lectures on Physics (1964)
Context: It is important to realize that in physics today, we have no knowledge what energy is. We do not have a picture that energy comes in little blobs of a definite amount. It is not that way.

“Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?"”

"What Do You Care What Other People Think?", p. 28-29
What Do You Care What Other People Think? (1988)
Context: Doubting the great Descartes … was a reaction I learned from my father: Have no respect whatsoever for authority; forget who said it and instead look what he starts with, where he ends up, and ask yourself, "Is it reasonable?"

“Agnostic for me would be trying to weasel out and sound a little nicer than I am about this.”

Response when asked whether he called himself an atheist or an agnostic. The Voice of Genius: Conversations with Nobel Scientists and Other Luminaries by Denis Brian (1995), Basic Books, p. 49.
Context: [I call myself] an atheist. Agnostic for me would be trying to weasel out and sound a little nicer than I am about this.

“We are at the very beginning of time for the human race. It is not unreasonable that we grapple with problems. But there are tens of thousands of years in the future. Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on.”

The Value of Science (1955)
Context: We are at the very beginning of time for the human race. It is not unreasonable that we grapple with problems. But there are tens of thousands of years in the future. Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on.
... It is our responsibility to leave the people of the future a free hand. In the impetuous youth of humanity, we can make grave errors that can stunt our growth for a long time. This we will do if we say we have the answers now, so young and ignorant as we are. If we suppress all discussion, all criticism, proclaiming "This is the answer, my friends; man is saved!" we will doom humanity for a long time to the chains of authority, confined to the limits of our present imagination. It has been done so many times before.
... It is our responsibility as scientists, knowing the great progress which comes from a satisfactory philosophy of ignorance, the great progress which is the fruit of freedom of thought, to proclaim the value of this freedom; to teach how doubt is not to be feared but welcomed and discussed; and to demand this freedom as our duty to all coming generations.

“If our small minds, for some convenience, divide this glass of wine, this universe, into parts — physics, biology, geology, astronomy, psychology, and so on — remember that nature does not know it!”

volume I; lecture 3, "The Relation of Physics to Other Sciences"; section 3-7, "How did it get that way?"; p. 3-10
The Feynman Lectures on Physics (1964)
Context: A poet once said, "The whole universe is in a glass of wine." We will probably never know in what sense he meant that, for poets do not write to be understood. But it is true that if we look at a glass of wine closely enough we see the entire universe. There are the things of physics: the twisting liquid which evaporates depending on the wind and weather, the reflections in the glass, and our imagination adds the atoms. The glass is a distillation of the Earth's rocks, and in its composition we see the secrets of the universe's age, and the evolution of stars. What strange arrays of chemicals are in the wine? How did they come to be? There are the ferments, the enzymes, the substrates, and the products. There in wine is found the great generalization: all life is fermentation. Nobody can discover the chemistry of wine without discovering, as did Louis Pasteur, the cause of much disease. How vivid is the claret, pressing its existence into the consciousness that watches it! If our small minds, for some convenience, divide this glass of wine, this universe, into parts — physics, biology, geology, astronomy, psychology, and so on — remember that nature does not know it! So let us put it all back together, not forgetting ultimately what it is for. Let it give us one more final pleasure: drink it and forget it all!

“I cannot define the real problem, therefore I suspect there's no real problem, but I'm not sure there's no real problem.”

" Simulating Physics with Computers http://www.cs.berkeley.edu/~christos/classics/Feynman.pdf", International Journal of Theoretical Physics, volume 21, 1982, p. 467-488, at p. 471
Context: We always have had … a great deal of difficulty in understanding the world view that quantum mechanics represents. At least I do, because I'm an old enough man that I haven't got to the point that this stuff is obvious to me. Okay, I still get nervous with it. And therefore, some of the younger students … you know how it always is, every new idea, it takes a generation or two until it becomes obvious that there's no real problem. It has not yet become obvious to me that there's no real problem. I cannot define the real problem, therefore I suspect there's no real problem, but I'm not sure there's no real problem.

“The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think.”

The Value of Science (1955)
Context: The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think. When a scientist doesn’t know the answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of what the result is going to be, he is still in some doubt. We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain. Now, we scientists are used to this, and we take it for granted that it is perfectly consistent to be unsure, that it is possible to live and not know. But I don’t know whether everyone realizes this is true. Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.

“It appears that there are enormous differences of opinion as to the probability of a failure with loss of vehicle and of human life.”

Rogers Commission Report (1986)
Context: It appears that there are enormous differences of opinion as to the probability of a failure with loss of vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher figures come from the working engineers, and the very low figures from management. What are the causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What is the cause of management's fantastic faith in the machinery?"
We have also found that certification criteria used in Flight Readiness Reviews often develop a gradually decreasing strictness. The argument that the same risk was flown before without failure is often accepted as an argument for the safety of accepting it again. Because of this, obvious weaknesses are accepted again and again, sometimes without a sufficiently serious attempt to remedy them, or to delay a flight because of their continued presence.

“There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery and awe of a flower. It only adds. I don't understand how it subtracts.”

"The Making of a Scientist," p. 11: video http://www.youtube.com/watch?v=NEwUwWh5Xs4&t=26s
What Do You Care What Other People Think? (1988)
Context: I have a friend who's an artist, and he sometimes takes a view which I don't agree with. He'll hold up a flower and say, "Look how beautiful it is," and I'll agree. But then he'll say, "I, as an artist, can see how beautiful a flower is. But you, as a scientist, take it all apart and it becomes dull." I think he's kind of nutty. … There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery and awe of a flower. It only adds. I don't understand how it subtracts.

“I wanted very much to learn to draw, for a reason that I kept to myself: I wanted to convey an emotion I have about the beauty of the world.”

Part 5: "The World of One Physicist", "But Is It Art?", p. 261
Surely You're Joking, Mr. Feynman! (1985)
Context: I wanted very much to learn to draw, for a reason that I kept to myself: I wanted to convey an emotion I have about the beauty of the world. It's difficult to describe because it's an emotion. It's analogous to the feeling one has in religion that has to do with a god that controls everything in the whole universe: there's a generality aspect that you feel when you think about how things that appear so different and behave so differently are all run "behind the scenes" by the same organization, the same physical laws. It's an appreciation of the mathematical beauty of nature, of how she works inside; a realization that the phenomena we see result from the complexity of the inner workings between atoms; a feeling of how dramatic and wonderful it is. It's a feeling of awe — of scientific awe — which I felt could be communicated through a drawing to someone who had also had this emotion. It could remind him, for a moment, of this feeling about the glories of the universe.

“They just went right on running rats in the same old way, and paid no attention to the great discoveries of Mr. Young, and his papers are not referred to, because he didn't discover anything about rats. In fact, he discovered all the things you have to do to discover something about rats. But not paying attention to experiments like that is a characteristic of cargo cult science.”

" Cargo Cult Science http://calteches.library.caltech.edu/51/2/CargoCult.htm", adapted from a 1974 Caltech commencement address; also published in Surely You're Joking, Mr. Feynman!, p. 345
Context: All experiments in psychology are not of this [cargo cult] type, however. For example there have been many experiments running rats through all kinds of mazes, and so on — with little clear result. But in 1937 a man named Young did a very interesting one. He had a long corridor with doors all along one side where the rats came in, and doors along the other side where the food was. He wanted to see if he could train rats to go to the third door down from wherever he started them off. No. The rats went immediately to the door where the food had been the time before.The question was, how did the rats know, because the corridor was so beautifully built and so uniform, that this was the same door as before? Obviously there was something about the door that was different from the other doors. So he painted the doors very carefully, arranging the textures on the faces of the doors exactly the same. Still the rats could tell. Then he thought maybe they were smelling the food, so he used chemicals to change the smell after each run. Still the rats could tell. Then he realized the rats might be able to tell by seeing the lights and the arrangement in the laboratory like any commonsense person. So he covered the corridor, and still the rats could tell.He finally found that they could tell by the way the floor sounded when they ran over it. And he could only fix that by putting his corridor in sand. So he covered one after another of all possible clues and finally was able to fool the rats so that they had to learn to go to the third door. If he relaxed any of his conditions, the rats could tell.Now, from a scientific standpoint, that is an A-number-one experiment. That is the experiment that makes rat-running experiments sensible, because it uncovers the clues that the rat is really using — not what you think it's using. And that is the experiment that tells exactly what conditions you have to use in order to be careful and control everything in an experiment with rat-running.I looked into the subsequent history of this research. The next experiment, and the one after that, never referred to Mr. Young. They never used any of his criteria of putting the corridor on sand, or of being very careful. They just went right on running rats in the same old way, and paid no attention to the great discoveries of Mr. Young, and his papers are not referred to, because he didn't discover anything about rats. In fact, he discovered all the things you have to do to discover something about rats. But not paying attention to experiments like that is a characteristic of cargo cult science.

“How can we draw inspiration to support these two pillars of western civilization so that they may stand together in full vigor, mutually unafraid? Is this not the central problem of our time?”

remarks (2 May 1956) at a Caltech YMCA lunch forum http://calteches.library.caltech.edu/49/2/Religion.htm
Context: Western civilization, it seems to me, stands by two great heritages. One is the scientific spirit of adventure — the adventure into the unknown, an unknown which must be recognized as being unknown in order to be explored; the demand that the unanswerable mysteries of the universe remain unanswered; the attitude that all is uncertain; to summarize it — the humility of the intellect. The other great heritage is Christian ethics — the basis of action on love, the brotherhood of all men, the value of the individual — the humility of the spirit.
These two heritages are logically, thoroughly consistent. But logic is not all; one needs one's heart to follow an idea. If people are going back to religion, what are they going back to? Is the modern church a place to give comfort to a man who doubts God — more, one who disbelieves in God? Is the modern church a place to give comfort and encouragement to the value of such doubts? So far, have we not drawn strength and comfort to maintain the one or the other of these consistent heritages in a way which attacks the values of the other? Is this unavoidable? How can we draw inspiration to support these two pillars of western civilization so that they may stand together in full vigor, mutually unafraid? Is this not the central problem of our time?

“The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next.”

Rogers Commission Report (1986)
Context: The acceptance and success of these flights is taken as evidence of safety. But erosion and blow-by are not what the design expected. They are warnings that something is wrong. The equipment is not operating as expected, and therefore there is a danger that it can operate with even wider deviations in this unexpected and not thoroughly understood way. The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next. The origin and consequences of the erosion and blow-by were not understood. They did not occur equally on all flights and all joints; sometimes more, and sometimes less. Why not sometime, when whatever conditions determined it were right, still more leading to catastrophe?
In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.

“Theoretically, planning may be good. But nobody has ever figured out the cause of government stupidity — and until they do (and find the cure), all ideal plans will fall into quicksand.”

(From a 1963 letter to his wife Gweneth, written while attending a gravity conference in Communist-era Warsaw.)
"Letters, Photos, and Drawings," p. 90-91
What Do You Care What Other People Think? (1988)
Context: The real question of government versus private enterprise is argued on too philosophical and abstract a basis. Theoretically, planning may be good. But nobody has ever figured out the cause of government stupidity — and until they do (and find the cure), all ideal plans will fall into quicksand.

“I too can see the stars on a desert night, and feel them. But do I see less or more? The vastness of the heavens stretches my imagination — stuck on this carousel my little eye can catch one-million-year-old light. A vast pattern — of which I am a part… What is the pattern, or the meaning, or the why? It does not do harm to the mystery to know a little about it. For far more marvelous is the truth than any artists of the past imagined! Why do the poets of the present not speak of it? What men are poets who can speak of Jupiter if he were a man, but if he is an immense spinning sphere of methane and ammonia must be silent?”

volume I; lecture 3, "The Relation of Physics to Other Sciences"; section 3-4, "Astronomy"; p. 3-6
The Feynman Lectures on Physics (1964)
Context: Poets say science takes away from the beauty of the stars — mere globs of gas atoms. Nothing is "mere". I too can see the stars on a desert night, and feel them. But do I see less or more? The vastness of the heavens stretches my imagination — stuck on this carousel my little eye can catch one-million-year-old light. A vast pattern — of which I am a part... What is the pattern, or the meaning, or the why? It does not do harm to the mystery to know a little about it. For far more marvelous is the truth than any artists of the past imagined! Why do the poets of the present not speak of it? What men are poets who can speak of Jupiter if he were a man, but if he is an immense spinning sphere of methane and ammonia must be silent?

“You'll have to accept it. It's the way nature works. If you want to know how nature works, we looked at it, carefully. Looking at it, that's the way it looks. You don't like it? Go somewhere else, to another universe where the rules are simpler, philosophically more pleasing, more psychologically easy.”

Sir Douglas Robb Lectures, University of Auckland (1979); lecture 1, "Photons: Corpuscles of Light" https://www.youtube.com/watch?v=eLQ2atfqk2c&t=24m2s
Context: There's a kind of saying that you don't understand its meaning, 'I don't believe it. It's too crazy. I'm not going to accept it.'… You'll have to accept it. It's the way nature works. If you want to know how nature works, we looked at it, carefully. Looking at it, that's the way it looks. You don't like it? Go somewhere else, to another universe where the rules are simpler, philosophically more pleasing, more psychologically easy. I can't help it, okay? If I'm going to tell you honestly what the world looks like to the human beings who have struggled as hard as they can to understand it, I can only tell you what it looks like.

“In this age of specialization men who thoroughly know one field are often incompetent to discuss another. The great problems of the relations between one and another aspect of human activity have for this reason been discussed less and less in public.”

remarks (2 May 1956) at a Caltech YMCA lunch forum http://calteches.library.caltech.edu/49/2/Religion.htm
Context: In this age of specialization men who thoroughly know one field are often incompetent to discuss another. The great problems of the relations between one and another aspect of human activity have for this reason been discussed less and less in public. When we look at the past great debates on these subjects we feel jealous of those times, for we should have liked the excitement of such argument. The old problems, such as the relation of science and religion, are still with us, and I believe present as difficult dilemmas as ever, but they are not often publicly discussed because of the limitations of specialization.

“If you have a theory, you must try to explain what’s good and what’s bad about it equally. In science, you learn a kind of standard integrity and honesty.”

"Afterthoughts," p. 217-218
What Do You Care What Other People Think? (1988)
Context: The only way to have real success in science, the field I’m familiar with, is to describe the evidence very carefully without regard to the way you feel it should be. If you have a theory, you must try to explain what’s good and what’s bad about it equally. In science, you learn a kind of standard integrity and honesty.

“Do you seriously entertain the idea that without the observer there is no reality?”

"On the Philosophical Problems in Quantizing Macroscopic Objects"(ca. 1962-1963) as quoted by Morinigo, Wagner, & Hatfield, Feynman Lectures on Gravitation (2002)
Context: This is all very confusing, especially when we consider that even though we may consistently consider ourselves to be the outside observer when we look at the rest of the world, the rest of the world is at the same time observing us, and that often we agree on what we see in each other. Does this then mean that my observations become real only when I observe an observer observing something as it happens? This is a horrible viewpoint. Do you seriously entertain the idea that without the observer there is no reality? Which observer? Any observer? Is a fly an observer? Is a star an observer? Was there no reality in the universe before 109 B. C. when life began? Or are you the observer? Then there is no reality to the world after you are dead? I know a number of otherwise respectable physicists who have bought life insurance.

“In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.”

Rogers Commission Report (1986)
Context: The acceptance and success of these flights is taken as evidence of safety. But erosion and blow-by are not what the design expected. They are warnings that something is wrong. The equipment is not operating as expected, and therefore there is a danger that it can operate with even wider deviations in this unexpected and not thoroughly understood way. The fact that this danger did not lead to a catastrophe before is no guarantee that it will not the next time, unless it is completely understood. When playing Russian roulette the fact that the first shot got off safely is little comfort for the next. The origin and consequences of the erosion and blow-by were not understood. They did not occur equally on all flights and all joints; sometimes more, and sometimes less. Why not sometime, when whatever conditions determined it were right, still more leading to catastrophe?
In spite of these variations from case to case, officials behaved as if they understood it, giving apparently logical arguments to each other often depending on the "success" of previous flights.

“It's a feeling of awe — of scientific awe — which I felt could be communicated through a drawing to someone who had also had this emotion. It could remind him, for a moment, of this feeling about the glories of the universe.”

Part 5: "The World of One Physicist", "But Is It Art?", p. 261
Surely You're Joking, Mr. Feynman! (1985)
Context: I wanted very much to learn to draw, for a reason that I kept to myself: I wanted to convey an emotion I have about the beauty of the world. It's difficult to describe because it's an emotion. It's analogous to the feeling one has in religion that has to do with a god that controls everything in the whole universe: there's a generality aspect that you feel when you think about how things that appear so different and behave so differently are all run "behind the scenes" by the same organization, the same physical laws. It's an appreciation of the mathematical beauty of nature, of how she works inside; a realization that the phenomena we see result from the complexity of the inner workings between atoms; a feeling of how dramatic and wonderful it is. It's a feeling of awe — of scientific awe — which I felt could be communicated through a drawing to someone who had also had this emotion. It could remind him, for a moment, of this feeling about the glories of the universe.

“Let us make recommendations to ensure that NASA officials deal in a world of reality in understanding technological weaknesses and imperfections well enough to be actively trying to eliminate them.”

Rogers Commission Report (1986)
Context: Let us make recommendations to ensure that NASA officials deal in a world of reality in understanding technological weaknesses and imperfections well enough to be actively trying to eliminate them. They must live in reality in comparing the costs and utility of the Shuttle to other methods of entering space. And they must be realistic in making contracts, in estimating costs, and the difficulty of the projects. Only realistic flight schedules should be proposed, schedules that have a reasonable chance of being met. If in this way the government would not support them, then so be it. NASA owes it to the citizens from whom it asks support to be frank, honest, and informative, so that these citizens can make the wisest decisions for the use of their limited resources.
For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.

“For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.”

Rogers Commission Report (1986)
Context: Let us make recommendations to ensure that NASA officials deal in a world of reality in understanding technological weaknesses and imperfections well enough to be actively trying to eliminate them. They must live in reality in comparing the costs and utility of the Shuttle to other methods of entering space. And they must be realistic in making contracts, in estimating costs, and the difficulty of the projects. Only realistic flight schedules should be proposed, schedules that have a reasonable chance of being met. If in this way the government would not support them, then so be it. NASA owes it to the citizens from whom it asks support to be frank, honest, and informative, so that these citizens can make the wisest decisions for the use of their limited resources.
For a successful technology, reality must take precedence over public relations, for nature cannot be fooled.

“The worthwhile problems are the ones you can really solve or help solve, the ones you can really contribute something to. … No problem is too small or too trivial if we can really do something about it.”

letter to Koichi Mano (3 February 1966); published in Perfectly Reasonable Deviations from the Beaten Track: The Letters of Richard P. Feynman (2005), p. 198, 201
also quoted by Freeman Dyson in "Wise Man" http://www.nybooks.com/articles/18350, The New York Review of Books (20 October 2005)
Context: The worthwhile problems are the ones you can really solve or help solve, the ones you can really contribute something to. … No problem is too small or too trivial if we can really do something about it. You say you are a nameless man. You are not to your wife and to your child. You will not long remain so to your immediate colleagues if you can answer their simple questions when they come into your office. You are not nameless to me. Do not remain nameless to yourself — it is too sad a way to be. Know your place in the world and evaluate yourself fairly, not in terms of the naïve ideals of your own youth, nor in terms of what you erroneously imagine your teacher's ideals are.

“Scientific knowledge is an enabling power to do either good or bad — but it does not carry instructions on how to use it.”

The Value of Science (1955)
Context: Of course if we make good things, it is not only to the credit of science; it is also to the credit of the moral choice which led us to good work. Scientific knowledge is an enabling power to do either good or bad — but it does not carry instructions on how to use it. Such power has evident value — even though the power may be negated by what one does with it.I learned a way of expressing this common human problem on a trip to Honolulu. In a Buddhist temple there, the man in charge explained a little bit about the Buddhist religion for tourists, and then ended his talk by telling them he had something to say to them that they would never forget — and I have never forgotten it. It was a proverb of the Buddhist religion:To every man is given the key to the gates of heaven; the same key opens the gates of hell.What then, is the value of the key to heaven? It is true that if we lack clear instructions that enable us to determine which is the gate to heaven and which the gate to hell, the key may be a dangerous object to use.But the key obviously has value: how can we enter heaven without it?

“We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain.”

The Value of Science (1955)
Context: The scientist has a lot of experience with ignorance and doubt and uncertainty, and this experience is of very great importance, I think. When a scientist doesn’t know the answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is uncertain. And when he is pretty darn sure of what the result is going to be, he is still in some doubt. We have found it of paramount importance that in order to progress we must recognize our ignorance and leave room for doubt. Scientific knowledge is a body of statements of varying degrees of certainty — some most unsure, some nearly sure, but none absolutely certain. Now, we scientists are used to this, and we take it for granted that it is perfectly consistent to be unsure, that it is possible to live and not know. But I don’t know whether everyone realizes this is true. Our freedom to doubt was born out of a struggle against authority in the early days of science. It was a very deep and strong struggle: permit us to question — to doubt — to not be sure. I think that it is important that we do not forget this struggle and thus perhaps lose what we have gained.

“The method of guessing the equation seems to be a pretty effective way of guessing new laws”

The Character of Physical Law (1965)
Context: …Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws. This shows again that mathematics is a deep way of expressing nature, and any attempt to express nature in philosophical principles, or in seat-of-the-pants mechanical feelings, is not an efficient way.

“From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics.”

volume II; lecture 1, "Electromagnetism"; section 1-6, "Electromagnetism in science and technology"; p. 1-11
The Feynman Lectures on Physics (1964)
Context: From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil War will pale into provincial insignificance in comparison with this important scientific event of the same decade.

“We've learned from experience that the truth will come out.”

" Cargo Cult Science http://calteches.library.caltech.edu/51/2/CargoCult.htm", adapted from a 1974 Caltech commencement address; also published in Surely You're Joking, Mr. Feynman!, p. 342
Context: We've learned from experience that the truth will come out. Other experimenters will repeat your experiment and find out whether you were wrong or right. Nature's phenomena will agree or they'll disagree with your theory. And, although you may gain some temporary fame and excitement, you will not gain a good reputation as a scientist if you haven't tried to be very careful in this kind of work. And it's this type of integrity, this kind of care not to fool yourself, that is missing to a large extent in much of the research in cargo cult science.

“And therefore when we go to investigate we shouldn’t pre-decide what it is we are trying to do except to find out more about it”

Source: No Ordinary Genius (1994), p. 251-252, from interview in "The Pleasure of Finding Things Out" (1981): video http://www.youtube.com/watch?v=NEwUwWh5Xs4&t=45m21s
(Also in book The Pleasure of Finding Things Out (1999) p. 23.)
Context: People say to me, "Are you looking for the ultimate laws of physics?" No, I'm not. I'm just looking to find out more about the world and if it turns out there is a simple ultimate law which explains everything, so be it; that would be very nice to discover. If it turns out it's like an onion with millions of layers and we're just sick and tired of looking at the layers, then that's the way it is!… And therefore when we go to investigate we shouldn’t pre-decide what it is we are trying to do except to find out more about it… My interest in science is to simply find out more about the world.

“On the contrary, it's because somebody knows something about it that we can't talk about physics. It's the things that nobody knows anything about that we can discuss. We can talk about the weather; we can talk about social problems; we can talk about psychology; we can talk about international finance — gold transfers we can't talk about, because those are understood — so it's the subject that nobody knows anything about that we can all talk about!”

Rejoinder when told that he couldn't talk about physics, because "nobody [at this table] knows anything about it."
Part 5: "The World of One Physicist", "Alfred Nobel's Other Mistake", p. 310.
Quoted in Handbook of Economic Growth (2005) by Philippe Aghion and Steven N. Durlauf.
Surely You're Joking, Mr. Feynman! (1985)

“The first principle is that you must not fool yourself — and you are the easiest person to fool.”

" Cargo Cult Science http://calteches.library.caltech.edu/51/2/CargoCult.htm", adapted from a 1974 Caltech commencement address; also published in Surely You're Joking, Mr. Feynman!, p. 343
Variant: The first principle is that you must not fool yourself — and you are the easiest person to fool.

“Tell your son to stop trying to fill your head with science — for to fill your heart with love is enough!”

Note to the mother of Marcus Chown, who had admired the profile of Feynman presented in the BBC TV Horizon program "The Pleasure of Finding Things Out" (1981). Written after Chown asked Feynman to write her a birthday note, hoping it would increase her interest in science.
Photo of note published in No Ordinary Genius: The Illustrated Richard Feynman (1996), by Christopher Sykes, p. 161.
In a " Quantum theory via 40-tonne trucks http://www.independent.co.uk/arts-entertainment/books/features/quantum-theory-via-40tonne-trucks-how-science-writing-became-popular-1866934.html", The Independent (17 January 2010), and in a audio interview on BBC 4 (September 2010), Chown recalled the note as: "Ignore your son's attempts to teach you physics. Physics is not the most important thing, love is."

“Physics is like sex: sure, it may give some practical results, but that's not why we do it.”

Does not appear to be from any of his books or cited in a biography. A Google Books search shows that the oldest book citing "physics is like sex" is Scary Monsters and Bright Ideas (2000) by science broadcaster Robyn Williams. On p. 44, this book claims: "Einstein said, 'You do not really understand something unless you can explain it to your grandmother'. Richard Feynman added, 'Physics is like sex: sure, it may give some practical results, but that's not why we do it'." Given that Einstein didn't really say the former, it's likely that Feynman didn't really say the latter.
Disputed and/or attributed
Variant: Physics is like sex: sure, it may give some practical results, but that's not why we do it.

“Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the organization of the entire tapestry.”

Source: The Character of Physical Law (1965), chapter 1, “The Law of Gravitation,” p. 34

“Why are the theories of physics so similar in their structure?”

QED: The Strange Theory of Light and Matter (1985)

Similar authors

Max Planck photo
Max Planck 30
German theoretical physicist
Paul Dirac photo
Paul Dirac 23
theoretical physicist
Steven Weinberg photo
Steven Weinberg 46
American theoretical physicist
Roy J. Glauber photo
Roy J. Glauber 1
American theoretical physicist
Stephen Hawking photo
Stephen Hawking 122
British theoretical physicist, cosmologist, and author
Werner Heisenberg photo
Werner Heisenberg 42
German theoretical physicist
Vitaly Ginzburg photo
Vitaly Ginzburg 2
Russian Physicist
Murray Gell-Mann photo
Murray Gell-Mann 10
American physicist
Abdus Salam photo
Abdus Salam 3
theoretical physicist, and Nobel Prize in Physics recipient
Peter Higgs photo
Peter Higgs 8
British physicist