John Wallis cytaty
strona 2

John Wallis – angielski matematyk, kryptograf i teolog.

Profesor geometrii w Oksfordzie, jeden z założycieli Royal Society; autor dzieła Arithmetica infinitorum, w którym rozpatruje szeregi nieskończone. Operuje pojęciem nieskończoności i nieskończenie małych, choć w sposób niezbyt ścisły; zbliża się do pojęcia granicy. Wallis wprowadził symbol ∞ oznaczający nieskończoność. Prace tego matematyka przygotowały grunt pod rachunek różniczkowy i całkowy. Wikipedia  

✵ 23. Listopad 1616 – 28. Październik 1703
John Wallis Fotografia
John Wallis: 34   Cytaty 0   Polubień

John Wallis: Cytaty po angielsku

“Let as many Numbers, as you please, be proposed to be Combined: Suppose Five, which we will call a b c d e. Put, in so many Lines, Numbers, in duple proportion, beginning with 1. The Sum (31) is the Number of Sumptions, or Elections; wherein, one or more of them, may several ways be taken. Hence subduct (5) the Number of the Numbers proposed; because each of them may once be taken singly. And the Remainder (26) shews how many ways they may be taken in Combination; (namely, Two or more at once.) And, consequently, how many Products may be had by the Multiplication of any two or more of them so taken. But the same Sum (31) without such Subduction, shews how many Aliquot Parts there are in the greatest of those Products, (that is, in the Number made by the continual Multiplication of all the Numbers proposed,) a b c d e.”

For every one of those Sumptions, are Aliquot Parts of a b c d e, except the last, (which is the whole,) and instead thereof, 1 is also an Aliquot Part; which makes the number of Aliquot Parts, the same with the Number of Sumptions. Only here is to be understood, (which the Rule should have intimated;) that, all the Numbers proposed, are to be Prime Numbers, and each distinct from the other. For if any of them be Compound Numbers, or any Two of them be the same, the Rule for Aliquot Parts will not hold.
Źródło: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.I Of the variety of Elections, or Choice, in taking or leaving One or more, out of a certain Number of things proposed.

“This method of mine takes its beginnings where Cavalieri ends his Method of indivisibles.”

...for as his was the Geometry of indivisibles, so I have chosen to call my method the Arithmetic of infinitesimals.
Arithmetica Infinitorum (1656)

Podobni autorzy

Gottfried Wilhelm Leibniz Fotografia
Gottfried Wilhelm Leibniz 21
niemiecki filozof, matematyk, inżynier-mechanik, fizyk i dy…
John Milton Fotografia
John Milton 9
poeta i pisarz angielski
Kartezjusz Fotografia
Kartezjusz 34
francuski filozof, matematyk i fizyk, jeden z najwybitniejs…
William Shakespeare Fotografia
William Shakespeare 125
angielski poeta i dramatopisarz
Tomasz Morus Fotografia
Tomasz Morus 12
angielski myśliciel, pisarz i polityk
Francis Bacon (filozof) Fotografia
Francis Bacon (filozof) 36
angielski filozof
Henry Fielding Fotografia
Henry Fielding 5
pisarz angielski
Blaise Pascal Fotografia
Blaise Pascal 41
filozof, matematyk i fizyk francuski
Jeremy Bentham Fotografia
Jeremy Bentham 8
angielski filozof, prawnik i ekonomista
Isaac Newton Fotografia
Isaac Newton 16
angielski naukowiec, odkrywca m.in. prawa powszechnego ciąż…