Richard Feynman: Quotes about the trip

Richard Feynman was American theoretical physicist. Explore interesting quotes on way.
Richard Feynman: 362   quotes 30   likes

“They just went right on running rats in the same old way, and paid no attention to the great discoveries of Mr. Young, and his papers are not referred to, because he didn't discover anything about rats. In fact, he discovered all the things you have to do to discover something about rats. But not paying attention to experiments like that is a characteristic of cargo cult science.”

" Cargo Cult Science http://calteches.library.caltech.edu/51/2/CargoCult.htm", adapted from a 1974 Caltech commencement address; also published in Surely You're Joking, Mr. Feynman!, p. 345
Context: All experiments in psychology are not of this [cargo cult] type, however. For example there have been many experiments running rats through all kinds of mazes, and so on — with little clear result. But in 1937 a man named Young did a very interesting one. He had a long corridor with doors all along one side where the rats came in, and doors along the other side where the food was. He wanted to see if he could train rats to go to the third door down from wherever he started them off. No. The rats went immediately to the door where the food had been the time before.The question was, how did the rats know, because the corridor was so beautifully built and so uniform, that this was the same door as before? Obviously there was something about the door that was different from the other doors. So he painted the doors very carefully, arranging the textures on the faces of the doors exactly the same. Still the rats could tell. Then he thought maybe they were smelling the food, so he used chemicals to change the smell after each run. Still the rats could tell. Then he realized the rats might be able to tell by seeing the lights and the arrangement in the laboratory like any commonsense person. So he covered the corridor, and still the rats could tell.He finally found that they could tell by the way the floor sounded when they ran over it. And he could only fix that by putting his corridor in sand. So he covered one after another of all possible clues and finally was able to fool the rats so that they had to learn to go to the third door. If he relaxed any of his conditions, the rats could tell.Now, from a scientific standpoint, that is an A-number-one experiment. That is the experiment that makes rat-running experiments sensible, because it uncovers the clues that the rat is really using — not what you think it's using. And that is the experiment that tells exactly what conditions you have to use in order to be careful and control everything in an experiment with rat-running.I looked into the subsequent history of this research. The next experiment, and the one after that, never referred to Mr. Young. They never used any of his criteria of putting the corridor on sand, or of being very careful. They just went right on running rats in the same old way, and paid no attention to the great discoveries of Mr. Young, and his papers are not referred to, because he didn't discover anything about rats. In fact, he discovered all the things you have to do to discover something about rats. But not paying attention to experiments like that is a characteristic of cargo cult science.

“You'll have to accept it. It's the way nature works. If you want to know how nature works, we looked at it, carefully. Looking at it, that's the way it looks. You don't like it? Go somewhere else, to another universe where the rules are simpler, philosophically more pleasing, more psychologically easy.”

Sir Douglas Robb Lectures, University of Auckland (1979); lecture 1, "Photons: Corpuscles of Light" https://www.youtube.com/watch?v=eLQ2atfqk2c&t=24m2s
Context: There's a kind of saying that you don't understand its meaning, 'I don't believe it. It's too crazy. I'm not going to accept it.'… You'll have to accept it. It's the way nature works. If you want to know how nature works, we looked at it, carefully. Looking at it, that's the way it looks. You don't like it? Go somewhere else, to another universe where the rules are simpler, philosophically more pleasing, more psychologically easy. I can't help it, okay? If I'm going to tell you honestly what the world looks like to the human beings who have struggled as hard as they can to understand it, I can only tell you what it looks like.

“The method of guessing the equation seems to be a pretty effective way of guessing new laws”

The Character of Physical Law (1965)
Context: …Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws. This shows again that mathematics is a deep way of expressing nature, and any attempt to express nature in philosophical principles, or in seat-of-the-pants mechanical feelings, is not an efficient way.

“The fact that you are not sure means that it is possible that there is another way someday.”

lecture II: "The Uncertainty of Values"
The Meaning of It All (1999)

“I do feel strongly that this is nonsense! … So perhaps I could entertain future historians by saying I think all this superstring stuff is crazy and is in the wrong direction. I think all this superstring stuff is crazy and is in the wrong direction. … I don’t like it that they’re not calculating anything. … why are the masses of the various particles such as quarks what they are? All these numbers … have no explanations in these string theories – absolutely none! … I don’t like that they don’t check their ideas. I don’t like that for anything that disagrees with an experiment, they cook up an explanation—a fix-up to say, “Well, it might be true.” For example, the theory requires ten dimensions. Well, maybe there’s a way of wrapping up six of the dimensions. Yes, that’s all possible mathematically, but why not seven? When they write their equation, the equation should decide how many of these things get wrapped up, not the desire to agree with experiment. In other words, there’s no reason whatsoever in superstring theory that it isn’t eight out of the ten dimensions that get wrapped up and that the result is only two dimensions, which would be completely in disagreement with experience. So the fact that it might disagree with experience is very tenuous, it doesn’t produce anything.”

interview published in Superstrings: A Theory of Everything? (1988) edited by Paul C. W. Davies and Julian R. Brown, p. 193-194

“You know, the most amazing thing happened to me tonight. I was coming here, on the way to the lecture, and I came in through the parking lot. And you won't believe what happened. I saw a car with the license plate ARW 357. Can you imagine? Of all the millions of license plates in the state, what was the chance that I would see that particular one tonight? Amazing!”

from a public lecture, as quoted in David L. Goodstein, "Richard P. Feynman, Teacher," Physics Today, volume 42, number 2 (February 1989) p. 70-75, at p. 73
Republished in the "Special Preface" to Six Easy Pieces (1995), p. xxi.
Republished also in the "Special Preface" to the "definitive edition" of The Feynman Lectures on Physics, volume I, p. xiv.

“The electron is a theory we use; it is so useful in understanding the way nature works that we can almost call it real.”

Part 2: "The Princeton Years", "A Map of the Cat?", p. 70
Surely You're Joking, Mr. Feynman! (1985)

“It is impossible, by the way, when picking one example of anything, to avoid picking one which is atypical in some sense.”

Source: The Character of Physical Law (1965), chapter 1, “The Law of Gravitation,” p. 27: video http://www.youtube.com/watch?v=j3mhkYbznBk&t=37m16s

“One of the first interesting experiences I had in this project at Princeton was meeting great men. I had never met very many great men before. But there was an evaluation committee that had to try to help us along, and help us ultimately decide which way we were going to separate the uranium. This committee had men like Compton and Tolman and Smyth and Urey and Rabi and Oppenheimer on it. I would sit in because I understood the theory of how our process of separating isotopes worked, and so they'd ask me questions and talk about it. In these discussions one man would make a point. Then Compton, for example, would explain a different point of view. He would say it should be this way, and he was perfectly right. Another guy would say, well, maybe, but there's this other possibility we have to consider against it.

So everybody is disagreeing, all around the table. I am surprised and disturbed that Compton doesn't repeat and emphasize his point. Finally at the end, Tolman, who's the chairman, would say, "Well, having heard all these arguments, I guess it's true that Compton's argument is the best of all, and now we have to go ahead."

It was such a shock to me to see that a committee of men could present a whole lot of ideas, each one thinking of a new facet, while remembering what the other fella said, so that, at the end, the decision is made as to which idea was the best -- summing it all up -- without having to say it three times. These were very great men indeed.”

from the First Annual Santa Barbara Lectures on Science and Society, University of California at Santa Barbara (1975)