
p, 125
On the Sizes and Distances of the Sun and the Moon (c. 250 BC)
The Fractal Geometry of Nature (1982), p. 1
p, 125
On the Sizes and Distances of the Sun and the Moon (c. 250 BC)
“Distance in a straight line has no mystery. The mystery is in the sphere.”
“A circle is a round straight line with a hole in the middle.”
Quoting a schoolchild in "English as She Is Taught"
The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)
“I did my best to go in a circle, hoping in this way to go in a straight line.”
Molloy (1951)
Context: Having heard, or more probably read somewhere, in the days when I thought I would be well advised to educate myself, or amuse myself, or stupefy myself, or kill time, that when a man in a forest thinks he is going forward in a straight line, in reality he is going in a circle, I did my best to go in a circle, hoping in this way to go in a straight line. For I stopped being half-witted and became sly, whenever I took the trouble … and if I did not go in a rigorously straight line, with my system of going in a circle, at least I did not go in a circle, and that was something.
p, 125
On the Sizes and Distances of the Sun and the Moon (c. 250 BC)
"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Context: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.