“I will not, from henceforward, talk to any squarer of the circle, trisector of the angle, duplicator of the cube, constructor of perpetual motion, subverter of gravitation, stagnator of the earth, builder of the universe, etc.”

Introductory p.9
A Budget of Paradoxes (1872)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "I will not, from henceforward, talk to any squarer of the circle, trisector of the angle, duplicator of the cube, const…" by Augustus De Morgan?
Augustus De Morgan photo
Augustus De Morgan 41
British mathematician, philosopher and university teacher (… 1806–1871

Related quotes

E. W. Hobson photo
Nicolaus Copernicus photo
Stephen Hawking photo
Thomas Little Heath photo
Aurelius Augustinus photo

“The philosophers who wished us to have the gods for our friends rank the friendship of the holy angels in the fourth circle of society, advancing now from the three circles of society on earth to the universe, and embracing heaven itself.”

XIX, 9
The City of God (early 400s)
Context: The philosophers who wished us to have the gods for our friends rank the friendship of the holy angels in the fourth circle of society, advancing now from the three circles of society on earth to the universe, and embracing heaven itself. And in this friendship we have indeed no fear that the angels will grieve us by their death or deterioration. But as we cannot mingle with them as familiarly as with men (which itself is one of the grievances of this life), and as Satan, as we read, sometimes transforms himself into an angel of light, to tempt those whom it is necessary to discipline, or just to deceive, there is great need of God’s mercy to preserve us from making friends of demons in disguise, while we fancy we have good angels for our friends; for the astuteness and deceitfulness of these wicked spirits is equalled by their hurtfulness.

Victor Hugo photo

“The migratory movement is at once perpetual, partial and universal. It never ceases, it affects every people … [and although] at a given moment it sets in motion only a small number of each population … in fact there is never a moment of immobility for any people, because no migration remains isolated.”

Eugene M. Kulischer (1881–1956) American sociologist

Source: Europe on the Move: War and Population Changes, 1917-1947, 1948, p. 9 as cited in: Sarah Collinson (1999) Globalisation and the dynamics of international migration implications for the refugee regime http://www.unhcr.org/refworld/pdfid/4ff59b852.pdf. May 1999. p. 1

Edwin Abbott Abbott photo
James Bradley photo

“Hitherto we have considered the apparent motion of the star about its true place, as made only in a plane parallel to the ecliptic, in which case it appears to describe a circle in that plane; but since, when we judge of the place and motion of a star, we conceive it to be in the surface of a sphere, whose centre is our eye, 'twill be necessary to reduce the motion in that plane to what it would really appear on the surface of such a sphere, or (which will be equivalent) to what it would appear on a plane touching such a sphere in the star's true place. Now in the present case, where we conceive the eye at an indefinite distance, this will be done by letting fall perpendiculars from each point of the circle on such a plane, which from the nature of the orthographic projection will form an ellipsis, whose greater axis will be equal to the diameter of that circle, and the lesser axis to the greater as the sine of the star's latitude to the radius, for this latter plane being perpendicular to a line drawn from the centre of the sphere through the star's true place, which line is inclined to the ecliptic in an angle equal to the star's latitude; the touching plane will be inclined to the plane of the ecliptic in an angle equal to the complement of the latitude. But it is a known proposition in the orthographic projection of the sphere, that any circle inclined to the plane of the projection, to which lines drawn from the eye, supposed at an infinite distance, are at right angles, is projected into an ellipsis, having its longer axis equal to its diameter, and its shorter to twice the cosine of the inclination to the plane of the projection, half the longer axis or diameter being the radius.
Such an ellipse will be formed in our present case…”

James Bradley (1693–1762) English astronomer; Astronomer Royal

Miscellaneous Works and Correspondence (1832), Demonstration of the Rules relating to the Apparent Motion of the Fixed Stars upon account of the Motion of Light.

Related topics