Philosophy : the basics (Fifth Edition, 2013), Introduction
“I thought we should require physical determinations, and not abstract integrations. A pernicious taste begins to infiltrate, from which real science will suffer far more than it will progress, and it would be often better for the true physics if there were no mathematics in the world.”
Ich vermeinte, man verlange physische Determinationen und nicht abstracte integrationes. Es fängt sich ein verderblicher goût an einzuschleichen, durch welchen die wahren Wissenschaften viel mehr leiden, als sie avancirt werden, und wäre es oft besser für die realem physicam, wenn keine Mathematik auf der Welt wäre.
Letter to Leonhard Euler, 26 January 1750, published in [Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle, P. H. Fuss, Saint Petersburg, 1843, 650]
Original
Ich vermeinte, man verlange physische Determinationen und nicht abstracte integrationes. Es fängt sich ein verderblicher goût an einzuschleichen, durch welchen die wahren Wissenschaften viel mehr leiden, als sie avancirt werden, und wäre es oft besser für die realem physicam, wenn keine Mathematik auf der Welt wäre.
Help us to complete the source, original and additional information
Related quotes

http://umich.edu/~scps/html/01chap/html/summary.htm
Attributed in posthumous publications, Einstein and Religion (1999)

[Jon Fripp, Michael Fripp, Deborah Fripp, Speaking of Science: Notable Quotes on Science, Engineering, and the Environment, https://books.google.com/books?id=44ihCUS1XQMC&pg=PA45, 2000, Newnes, 978-1-878707-51-2, 45]

As We May Think (1945)
Context: If scientific reasoning were limited to the logical processes of arithmetic, we should not get far in our understanding of the physical world. One might as well attempt to grasp the game of poker entirely by the use of the mathematics of probability. The abacus, with its beads strung on parallel wires, led the Arabs to positional numeration and the concept of zero many centuries before the rest of the world; and it was a useful tool — so useful that it still exists.

"David J. Gross - Biographical" http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/gross-bio.html, Nobel Prize in Physics, nobelprize.org (2004)
"Quantum Mechanics: Non-relativistic Theory", together with L. D. Landau, translated by John Menzies (third edition 1991), p. xi

§ 2.
Linear Associative Algebra (1882)
Context: The branches of mathematics are as various as the sciences to which they belong, and each subject of physical enquiry has its appropriate mathematics. In every form of material manifestation, there is a corresponding form of human thought, so that the human mind is as wide in its range of thought as the physical universe in which it thinks.

Elements de la géométrie de l'infini (1727) as quoted by Amir R. Alexander, Geometrical Landscapes: The Voyages of Discovery and the Transformation of Mathematical Practice (2002) citing Michael S. Mahoney, "Infinitesimals and Transcendent Relations: The Mathematics of Motion in the Late Seventeenth Century" in Reappraisals of the Scientific Revolution, ed. David C. Lindberg, Robert S. Westman (1990)