“Though the defects in Diophantus' proofs are in general due to the limitation of his symbolism, it is not so always. Very frequently indeed Diophantus introduces into a solution arbitrary conditions and determinations which are not in the problem. Of such "fudged" solutions, as a schoolboy would call them, two particular kinds are very frequent. Sometimes an unknown is assumed at a determinate value… Sometimes a new condition is introduced.”

A Short History of Greek Mathematics (1884)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "Though the defects in Diophantus' proofs are in general due to the limitation of his symbolism, it is not so always. Ve…" by James Gow (scholar)?
James Gow (scholar) photo
James Gow (scholar) 22
scholar 1854–1923

Related quotes

Paul A. Samuelson photo
Thomas Little Heath photo

“It may be in some measure due to the defects of notation in his time that Diophantos will have in his solutions no numbers whatever except rational numbers, in [the non-numbers of] which, in addition to surds and imaginary quantities, he includes negative quantities. …Such equations then as lead to surd, imaginary, or negative roots he regards as useless for his purpose: the solution is in these cases ὰδοπος, impossible. So we find him describing the equation 4=4x+20 as ᾰτοπος because it would give x=-4. Diophantos makes it throughout his object to obtain solutions in rational numbers, and we find him frequently giving, as a preliminary, conditions which must be satisfied, which are the conditions of a result rational in Diophantos' sense. In the great majority of cases when Diophantos arrives in the course of a solution at an equation which would give an irrational result he retraces his steps and finds out how his equation has arisen, and how he may by altering the previous work substitute for it another which shall give a rational result. This gives rise, in general, to a subsidiary problem the solution of which ensures a rational result for the problem itself. Though, however, Diophantos has no notation for a surd, and does not admit surd results, it is scarcely true to say that he makes no use of quadratic equations which lead to such results. Thus, for example, in v. 33 he solves such an equation so far as to be able to see to what integers the solution would approximate most nearly.”

Thomas Little Heath (1861–1940) British civil servant and academic

Diophantos of Alexandria: A Study in the History of Greek Algebra (1885)

Carl Friedrich Gauss photo

“Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.”

Carl Friedrich Gauss (1777–1855) German mathematician and physical scientist

"Gauss's Abstract of the Disquisitiones Generales circa Superficies Curvas presented to the Royal Society of Gottingen" (1827) Tr. James Caddall Morehead & Adam Miller Hiltebeitel in General Investigations of Curved Surfaces of 1827 and 1825 http://books.google.com/books?id=SYJsAAAAMAAJ& (1902)
Context: In researches in which an infinity of directions of straight lines in space is concerned, it is advantageous to represent these directions by means of those points upon a fixed sphere, which are the end points of the radii drawn parallel to the lines. The centre and the radius of this auxiliary sphere are here quite arbitrary. The radius may be taken equal to unity. This procedure agrees fundamentally with that which is constantly employed in astronomy, where all directions are referred to a fictitious celestial sphere of infinite radius. Spherical trigonometry and certain other theorems, to which the author has added a new one of frequent application, then serve for the solution of the problems which the comparison of the various directions involved can present.

Adam Smith photo
Viktor E. Frankl photo

Related topics