“I have said that mathematics is the oldest of the sciences; a glance at its more recent history will show that it has the energy of perpetual youth. The output of contributions to the advance of the science during the last century and more has been so enormous that it is difficult to say whether pride in the greatness of achievement in this subject, or despair at his inability to cope with the multiplicity of its detailed developments, should be the dominant feeling of the mathematician. Few people outside of the small circle of mathematical specialists have any idea of the vast growth of mathematical literature. The Royal Society Catalogue contains a list of nearly thirty-nine thousand papers on subjects of Pure Mathematics alone, which have appeared in seven hundred serials during the nineteenth century. This represents only a portion of the total output, the very large number of treatises, dissertations, and monographs published during the century being omitted.”

—  E. W. Hobson

Source: Presidential Address British Association for the Advancement of Science, Section A (1910), p. 283; Cited in: Moritz (1914, 108-9): Modern mathematics.

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "I have said that mathematics is the oldest of the sciences; a glance at its more recent history will show that it has t…" by E. W. Hobson?
E. W. Hobson photo
E. W. Hobson 20
British mathematician 1856–1933

Related quotes

Stephen Hawking photo
John Von Neumann photo

“The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.”

John Von Neumann (1903–1957) Hungarian-American mathematician and polymath

As quoted in Bigeometric Calculus: A System with a Scale-Free Derivative (1983) by Michael Grossman, and in Single Variable Calculus (1994) by James Stewart.

Benjamin Peirce photo

“The branches of mathematics are as various as the sciences to which they belong, and each subject of physical enquiry has its appropriate mathematics.”

§ 2.
Linear Associative Algebra (1882)
Context: The branches of mathematics are as various as the sciences to which they belong, and each subject of physical enquiry has its appropriate mathematics. In every form of material manifestation, there is a corresponding form of human thought, so that the human mind is as wide in its range of thought as the physical universe in which it thinks.

Tryon Edwards photo
Thomas Little Heath photo
Adolphe Quetelet photo

“The more advanced the sciences have become, the more they have tended to enter the domain of mathematics, which is a sort of center towards which they converge. We can judge of the perfection to which a science has come by the facility, more or less great, with which it may be approached by calculation.”

Adolphe Quetelet (1796–1874) Belgian astronomer, mathematician, statistician and sociologist

Edward Mailly, Essai sur la vie et les ouv rages de Quetelet in the Annuaire de Vacadimie royale des sciences des lettres et des beaux-arts de Belgique (1875) Vol. xli pp. 109-297 found also in "Conclusions" of Instructions populaires sur le calcul des probabilités p. 230

Vladimir I. Arnold photo

“At the beginning of this century a self-destructive democratic principle was advanced in mathematics (especially by Hilbert), according to which all axiom systems have equal right to be analyzed, and the value of a mathematical achievement is determined, not by its significance and usefulness as in other sciences, but by its difficulty alone, as in mountaineering.”

Vladimir I. Arnold (1937–2010) Russian mathematician

"Will Mathematics Survive? Report on the Zurich Congress" in The Mathematical Intelligencer, Vol. 17, no. 3 (1995), pp. 6–10.
Context: At the beginning of this century a self-destructive democratic principle was advanced in mathematics (especially by Hilbert), according to which all axiom systems have equal right to be analyzed, and the value of a mathematical achievement is determined, not by its significance and usefulness as in other sciences, but by its difficulty alone, as in mountaineering. This principle quickly led mathematicians to break from physics and to separate from all other sciences. In the eyes of all normal people, they were transformed into a sinister priestly caste... Bizarre questions like Fermat's problem or problems on sums of prime numbers were elevated to supposedly central problems of mathematics.

E. W. Hobson photo

“A great department of thought must have its own inner life, however transcendent may be the importance of its relations to the outside. No department of science, least of all one requiring so high a degree of mental concentration as Mathematics, can be developed entirely, or even mainly, with a view to applications outside its own range. The increased complexity and specialisation of all branches of knowledge makes it true in the present, however it may have been in former times, that important advances in such a department as Mathematics can be expected only from men who are interested in the subject for its own sake, and who, whilst keeping an open mind for suggestions from outside, allow their thought to range freely in those lines of advance which are indicated by the present state of their subject, untrammelled by any preoccupation as to applications to other departments of science. Even with a view to applications, if Mathematics is to be adequately equipped for the purpose of coping with the intricate problems which will be presented to it in the future by Physics, Chemistry and other branches of physical science, many of these problems probably of a character which we cannot at present forecast, it is essential that Mathematics should be allowed to develop freely on its own lines.”

E. W. Hobson (1856–1933) British mathematician

Source: Presidential Address British Association for the Advancement of Science, Section A (1910), p. 286; Cited in: Moritz (1914, 106): Modern mathematics.

Thomas Little Heath photo

Related topics