John Nash Jr cytaty

John Forbes Nash Jr – amerykański matematyk i ekonomista.

✵ 13. Czerwiec 1928 – 23. Maj 2015
John Nash Jr Fotografia
John Nash Jr: 23   Cytaty 0   Polubień

John Nash Jr: Cytaty po angielsku

“You don't have to be a mathematician to have a feel for numbers.”

Statement of 2006, partly cited in Stop Making Sense: Music from the Perspective of the Real (2015) by Scott Wilson, p. 117
2000s
Kontekst: You don't have to be a mathematician to have a feel for numbers. A movie, by the way, was made — sort of a small-scale offbeat movie — called Pi recently. I think it starts off with a big string of digits running across the screen, and then there are people who get concerned with various things, and in the end this Bible code idea comes up. And that ties in with numbers, so the relation to numbers is not necessarily scientific, and even when I was mentally disturbed, I had a lot of interest in numbers.

“One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Kontekst: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.

“At the present time I seem to be thinking rationally again in the style that is characteristic of scientists.”

Autobiographical essay (1994)
Kontekst: At the present time I seem to be thinking rationally again in the style that is characteristic of scientists. However this is not entirely a matter of joy as if someone returned from physical disability to good physical health. One aspect of this is that rationality of thought imposes a limit on a person's concept of his relation to the cosmos.

“People are always selling the idea that people with mental illness are suffering. I think madness can be an escape. If things are not so good, you maybe want to imagine something better. In madness, I thought I was the most important person in the world.”

As quoted in " A Brilliant Madness A Beautiful Madness http://www.pbs.org/wgbh/amex/nash/ (2002), PBS TV program; also cited in Doing Psychiatry Wrong: A Critical and Prescriptive Look at a Faltering Profession (2013) by René J. Muller, p. 62
2000s

“Though I had success in my research both when I was mad and when I was not, eventually I felt that my work would be better respected if I thought and acted like a 'normal' person.”

As quoted in A Beautiful Mind, (2001); also cited in Quantum Phaith (2011), by Jeffrey Strickland, p. 197
2000s

“The writer has developed a “dynamical” approach to the study of cooperative games based upon reduction to non-cooperative form.”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Kontekst: The writer has developed a “dynamical” approach to the study of cooperative games based upon reduction to non-cooperative form. One proceeds by constructing a model of the preplay negotiation so that the steps of negotiation become moves in a larger non-cooperative game [which will have an infinity of pure strategies] describing the total situation. This larger game is then treated in terms of the theory of this paper [extended to infinite games] and if values are obtained they are taken as the values of the cooperative game. Thus the problem of analyzing a cooperative game becomes the problem of obtaining a suitable, and convincing, non-cooperative model for the negotiation.
The writer has, by such a treatment, obtained values for all finite two-person cooperative games, and some special n-person games.

“Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951); as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel
1950s
Kontekst: A less obvious type of application (of non-cooperative games) is to the study of. By a cooperative game we mean a situation involving a set of players, pure strategies, and payoffs as usual; but with the assumption that the players can and will collaborate as they do in the von Neumann and Morgenstern theory. This means the players may communicate and form coalitions which will be enforced by an umpire. It is unnecessarily restrictive, however, to assume any transferability or even comparability of the pay-offs [which should be in utility units] to different players. Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.

“Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game.”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Kontekst: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.

“The writer has, by such a treatment, obtained values for all finite two-person cooperative games, and some special n-person games.”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Kontekst: The writer has developed a “dynamical” approach to the study of cooperative games based upon reduction to non-cooperative form. One proceeds by constructing a model of the preplay negotiation so that the steps of negotiation become moves in a larger non-cooperative game [which will have an infinity of pure strategies] describing the total situation. This larger game is then treated in terms of the theory of this paper [extended to infinite games] and if values are obtained they are taken as the values of the cooperative game. Thus the problem of analyzing a cooperative game becomes the problem of obtaining a suitable, and convincing, non-cooperative model for the negotiation.
The writer has, by such a treatment, obtained values for all finite two-person cooperative games, and some special n-person games.

“Thus I have hopes of being able to achieve something of value through my current studies or with any new ideas that come in the future.”

Autobiographical essay (1994)
Kontekst: Statistically, it would seem improbable that any mathematician or scientist, at the age of 66, would be able through continued research efforts, to add much to his or her previous achievements. However I am still making the effort and it is conceivable that with the gap period of about 25 years of partially deluded thinking providing a sort of vacation my situation may be atypical. Thus I have hopes of being able to achieve something of value through my current studies or with any new ideas that come in the future.

“A less obvious type of application (of non-cooperative games) is to the study of .”

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951); as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel
1950s
Kontekst: A less obvious type of application (of non-cooperative games) is to the study of. By a cooperative game we mean a situation involving a set of players, pure strategies, and payoffs as usual; but with the assumption that the players can and will collaborate as they do in the von Neumann and Morgenstern theory. This means the players may communicate and form coalitions which will be enforced by an umpire. It is unnecessarily restrictive, however, to assume any transferability or even comparability of the pay-offs [which should be in utility units] to different players. Any desired transferability can be put into the game itself instead of assuming it possible in the extra-game collaboration.

Podobni autorzy

Joseph E. Stiglitz Fotografia
Joseph E. Stiglitz 13
ekonomista amerykański, noblista
Milton Friedman Fotografia
Milton Friedman 27
ekonomista amerykański, noblista
Ludwig von Mises Fotografia
Ludwig von Mises 36
ekonomista austriacki
Friedrich August von Hayek Fotografia
Friedrich August von Hayek 38
ekonomista austriacki, noblista
Pablo Neruda Fotografia
Pablo Neruda 6
poeta chilijski, noblista
Bertrand Russell Fotografia
Bertrand Russell 83
angielski logik, matematyk, filozof, myśliciel, działacz sp…
Dag Hammarskjöld Fotografia
Dag Hammarskjöld 25
szwedzki polityk, dyplomata, ekonomista i prawnik
Isaac Bashevis Singer Fotografia
Isaac Bashevis Singer 32
pisarz amerykański, noblista
Richard Feynman Fotografia
Richard Feynman 33
amerykański fizyk, noblista
Robert Kiyosaki Fotografia
Robert Kiyosaki 15
amerykański ekonomista, teoretyk inwestowania