This was the method followed by Euclid, who, fortunately for us, never dreamed of a geometry of triangles, as distinguished from a geometry of circles, or a separate application of the arithmetics of addition and subtraction; but made one help out the other as he best could.
The Differential and Integral Calculus (1836)
“Experience has convinced me that the proper way of teaching is to bring together that which is simple from all quarters, and, if I may use such a phrase, to draw upon the surface of the subject a proper mean between the line of closest connexion and the line of easiest deduction. This was the method followed by Euclid, who, fortunately for us, never dreamed of a geometry of triangles, as distinguished from a geometry of circles, or a separate application of the arithmetics of addition and subtraction; but made one help out the other as he best could.”
Advertisement, p.4
The Differential and Integral Calculus (1836)
Help us to complete the source, original and additional information
Augustus De Morgan 41
British mathematician, philosopher and university teacher (… 1806–1871Related quotes
Preface (8 May 1686)
Philosophiae Naturalis Principia Mathematica (1687)
Context: The ancients considered mechanics in a twofold respect; as rational, which proceeds accurately by demonstration, and practical. To practical mechanics all the manual arts belong, from which mechanics took its name. But as artificers do not work with perfect accuracy, it comes to pass that mechanics is so distinguished from geometry, that what is perfectly accurate is called geometrical; what is less so is called mechanical. But the errors are not in the art, but in the artificers. He that works with less accuracy is an imperfect mechanic: and if any could work with perfect accuracy, he would be the most perfect mechanic of all; for the description of right lines and circles, upon which geometry is founded, belongs to mechanics. Geometry does not teach us to draw these lines, but requires them to be drawn; for it requires that the learner should first be taught to describe these accurately, before he enters upon geometry; then it shows how by these operations problems may be solved.
Part 1, Book 1, ch. 7, art. 1.
Philosophy of the Inductive Sciences (1840)
The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)
Dans Les Leçons Élémentaires sur les Mathématiques (1795) Leçon cinquiéme, Tr. McCormack, cited in Moritz, Memorabilia mathematica or, The philomath's quotation-book (1914) Ch. 15 Arithmetic, p. 261. https://archive.org/stream/memorabiliamathe00moriiala#page/260/mode/2up
The portion of the Integral Calculus, which properly belongs to any given portion of the Differential Calculus increases its power a hundred-fold...
The Differential and Integral Calculus (1836)
Source: De architectura (The Ten Books On Architecture) (~ 15BC), Book I, Chapter I, Sec. 4
Arithmetica Universalis (1707)
Context: Geometry was invented that we might expeditiously avoid, by drawing Lines, the Tediousness of Computation. Therefore these two Sciences ought not to be confounded. The Antients did so industriously distinguish them from one another, that they never introduc'd Arithmetical Terms into Geometry. And the Moderns, by confounding both, have lost the Simplicity in which all the Elegancy of Geometry consists. Wherefore that is Arithmetically more simple which is determin'd by the more simple Æquations, but that is Geometrically more simple which is determin'd by the more simple drawing of Lines; and in Geometry, that ought to be reckon'd best which is Geometrically most simple. Wherefore, I ought not to be blamed, if with that Prince of Mathematicians, Archimedes and other Antients, I make use of the Conchoid for the Construction of solid Problems.<!--p.230