“The first impulse came from the consideration of negatives in geometry; I was accustomed to viewing the distances AB and BA as opposite magnitudes. Arising from this idea was the conclusion that if A, B, and C are points of a straight line, then in all cases AB + BC = AC, this being true whether AB and BC are directed in the same direction or in opposite directions (where C lies between A and B). In the latter case AB and BC were not viewed as merely lengths, but simultaneously their considered since they were oppositely directed, Thus dawned the distinction between the sum of lengths and the sum of distances which were fixed in direction. From this resulted the requirement for establishing this latter concept of sum, not simply for the case where the distances were directed in the same or opposite directions, but also for any other case. This could be done in the most simple manner, since the law that AB + BC = AC remains valid when A, B, and C do not lie on a straight line.
This then was the first step which led to a new branch of mathematics… I did not however realize how fruitful and how rich was the field that I had opened up; rather that result seemed scarcely worthy of note until it was combined with a related idea.”

Ausdehnungslehre (1844)

Adopted from Wikiquote. Last update Sept. 27, 2023. History

Help us to complete the source, original and additional information

Do you have more details about the quote "The first impulse came from the consideration of negatives in geometry; I was accustomed to viewing the distances AB an…" by Hermann Grassmann?
Hermann Grassmann photo
Hermann Grassmann 10
German polymath, linguist and mathematician 1809–1877

Related quotes

Immanuel Kant photo
Isaac Newton photo
Michael Collins (Irish leader) photo
Hermann Grassmann photo
George Peacock photo
Thomas Little Heath photo

“The discovery of Hippocrates amounted to the discovery of the fact that from the relation
(1)\frac{a}{x} = \frac{x}{y} = \frac{y}{b}it follows that(\frac{a}{x})^3 = [\frac{a}{x} \cdot \frac{x}{y} \cdot \frac{y}{b} =] \frac{a}{b}and if a = 2b, [then (\frac{a}{x})^3 = 2, and]a^3 = 2x^3.The equations (1) are equivalent [by reducing to common denominators or cross multiplication] to the three equations
(2)x^2 = ay, y^2 = bx, xy = ab[or equivalently…y = \frac{x^2}{a}, x = \frac{y^2}{b}, y = \frac{ab}{x} ]Doubling the Cube
the 2 solutions of Menaechmusand the solutions of Menaechmus described by Eutocius amount to the determination of a point as the intersection of the curves represented in a rectangular system of Cartesian coordinates by any two of the equations (2).
Let AO, BO be straight lines placed so as to form a right angle at O, and of length a, b respectively. Produce BO to x and AO to y.
The first solution now consists in drawing a parabola, with vertex O and axis Ox, such that its parameter is equal to BO or b, and a hyperbola with Ox, Oy as asymptotes such that the rectangle under the distances of any point on the curve from Ox, Oy respectively is equal to the rectangle under AO, BO i. e. to ab. If P be the point of intersection of the parabola and hyperbola, and PN, PM be drawn perpendicular to Ox, Oy, i. e. if PN, PM be denoted by y, x, the coordinates of the point P, we shall have

\begin{cases}y^2 = b. ON = b. PM = bx\\ and\\ xy = PM. PN = ab\end{cases}whence\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.
In the second solution of Menaechmus we are to draw the parabola described in the first solution and also the parabola whose vertex is O, axis Oy and parameter equal to a.”

Thomas Little Heath (1861–1940) British civil servant and academic

The point P where the two parabolas intersect is given by<center><math>\begin{cases}y^2 = bx\\x^2 = ay\end{cases}</math></center>whence, as before,<center><math>\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.</math></center>
Apollonius of Perga (1896)

Bob Dylan photo
Marshall McLuhan photo
François Viète photo

“On symbolic use of equalities and proportions. Chapter II.
The analytical method accepts as proven the most famous [ as known from Euclid ] symbolic use of equalities and proportions that are found in items such as:
1. The whole is equal to the sum of its parts.
2. Quantities being equal to the same quantity have equality between themselves. [a = c & b = c => a = b]
3. If equal quantities are added to equal quantities the resulting sums are equal.
4. If equals are subtracted from equal quantities the remains are equal.
5. If equal equal amounts are multiplied by equal amounts the products are equal.
6. If equal amounts are divided by equal amounts, the quotients are equal.
7. If the quantities are in direct proportion so also are they are in inverse and alternate proportion. [a:b::c:d=>b:a::d:c & a:c::b:d]
8. If the quantities in the same proportion are added likewise to amounts in the same proportion, the sums are in proportion. [a:b::c:d => (a+c):(b+d)::c:d]
9. If the quantities in the same proportion are subtracted likewise from amounts in the same proportion, the differences are in proportion. [a:b::c:d => (a-c):(b-d)::c:d]
10. If proportional quantities are multiplied by proportional quantities the products are in proportion. [a:b::c:d & e:f::g:h => ae:bf::cg:dh]
11. If proportional quantities are divided by proportional quantities the quotients are in proportion. [a:b::c:d & e:f::g:h => a/e:b/f::c/g:d/h]
12. A common multiplier or divisor does not change an equality nor a proportion. [a:b::ka:kb & a:b::(a/k):(b/k)]
13. The product of different parts of the same number is equal to the product of the sum of these parts by the same number. [ka + kb = k(a+b)]
14. The result of successive multiplications or divisions of a magnitude by several others is the same regardless of the sequential order of quantities multiplied times or divided into that magnitude.
But the masterful symbolic use of equalities and proportions which the analyst may apply any time is the following:
15. If we have three or four magnitudes and the product of the extremes is equal to the product means, they are in proportion. [ad=bc => a:b::c:d OR ac=b2 => a:b::b:c]
And conversely
10. If we have three or four magnitudes and the first is to the second as the second or the third is to the last, the product of the extremes is equal to that of means. [a:b::c:d => ad=bc OR a:b::b:c => ac=b2]
We can call a proportion the establishment of an equality [equation] and an equality [equation] the resolution of a proportion.”

François Viète (1540–1603) French mathematician

From Frédéric Louis Ritter's French Tr. Introduction à l'art Analytique (1868) utilizing Google translate with reference to English translation in Jacob Klein, Greek Mathematical Thought and the Origin of Algebra (1968) Appendix
In artem analyticem Isagoge (1591)

V. V. S. Laxman photo

“AB de Villers is the most complete player of the Modern Era.”

V. V. S. Laxman (1974) former Indian cricketer

On AB Devillers , superman of sports.

Related topics