“Perhaps the least inadequate description of the general scope of modern Pure Mathematics—I will not call it a definition—would be to say that it deals with form, in a very general sense of the term; this would include algebraic form, functional relationship, the relations of order in any ordered set of entities such as numbers, and the analysis of the peculiarities of form of groups of operations.”

—  E. W. Hobson

Source: Presidential Address British Association for the Advancement of Science, Section A (1910), p. 287; Cited in: Robert Edouard Moritz. Memorabilia mathematica; or, The philomath's quotation-book https://archive.org/stream/memorabiliamathe00moriiala#page/4/mode/2up, (1914), p. 5: Definitions and objects of mathematics.

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "Perhaps the least inadequate description of the general scope of modern Pure Mathematics—I will not call it a definitio…" by E. W. Hobson?
E. W. Hobson photo
E. W. Hobson 20
British mathematician 1856–1933

Related quotes

George Peacock photo
George Peacock photo

“It is known that the mathematics prescribed for the high school [Gymnasien] is essentially Euclidean, while it is modern mathematics, the theory of functions and the infinitesimal calculus, which has secured for us an insight into the mechanism and laws of nature. Euclidean mathematics is indeed, a prerequisite for the theory of functions, but just as one, though he has learned the inflections of Latin nouns and verbs, will not thereby be enabled to read a Latin author much less to appreciate the beauties of a Horace, so Euclidean mathematics, that is the mathematics of the high school, is unable to unlock nature and her laws. Euclidean mathematics assumes the completeness and invariability of mathematical forms; these forms it describes with appropriate accuracy and enumerates their inherent and related properties with perfect clearness, order, and completeness, that is, Euclidean mathematics operates on forms after the manner that anatomy operates on the dead body and its members.
On the other hand, the mathematics of variable magnitudes—function theory or analysis—considers mathematical forms in their genesis. By writing the equation of the parabola, we express its law of generation, the law according to which the variable point moves. The path, produced before the eyes of the 113 student by a point moving in accordance to this law, is the parabola.
If, then, Euclidean mathematics treats space and number forms after the manner in which anatomy treats the dead body, modern mathematics deals, as it were, with the living body, with growing and changing forms, and thus furnishes an insight, not only into nature as she is and appears, but also into nature as she generates and creates,—reveals her transition steps and in so doing creates a mind for and understanding of the laws of becoming. Thus modern mathematics bears the same relation to Euclidean mathematics that physiology or biology … bears to anatomy. But it is exactly in this respect that our view of nature is so far above that of the ancients; that we no longer look on nature as a quiescent complete whole, which compels admiration by its sublimity and wealth of forms, but that we conceive of her as a vigorous growing organism, unfolding according to definite, as delicate as far-reaching, laws; that we are able to lay hold of the permanent amidst the transitory, of law amidst fleeting phenomena, and to be able to give these their simplest and truest expression through the mathematical formulas”

Christian Heinrich von Dillmann (1829–1899) German educationist

Source: Die Mathematik die Fackelträgerin einer neuen Zeit (Stuttgart, 1889), p. 37.

Willem de Sitter photo
George Boole photo

“It is upon the foundation of this general principle, that I purpose to establish the Calculus of Logic, and that I claim for it a place among the acknowledged forms of Mathematical Analysis,”

George Boole (1815–1864) English mathematician, philosopher and logician

Source: 1840s, The Mathematical Analysis of Logic, 1847, p. iii
Context: That to the existing forms of Analysis a quantitative interpretation is assigned, is the result of the circumstances by which those forms were determined, and is not to be construed into a universal condition of Analysis. It is upon the foundation of this general principle, that I purpose to establish the Calculus of Logic, and that I claim for it a place among the acknowledged forms of Mathematical Analysis, regardless that in its object and in its instruments it must at present stand alone.

Nicholas Murray Butler photo
David Eugene Smith photo
Walter A. Shewhart photo
Bertrand Russell photo

Related topics