John Wallis: Quotes about time

John Wallis was English mathematician. Explore interesting quotes on time.
John Wallis: 68   quotes 0   likes

“I did at last overcome the Difficulty; but with so much Paines and Expense of Time as I am not willing to mention; though yet I did not repent of that Labour, when I had discovered thereby, that it was a Businesse, which though with much Difficulty, was yet capable to bee effected.”

An Essay on the Art of Decyphering (1737)
Context: Partly out of my owne Curiosity, partly to satisfy the Gentleman's Importunity that did request it, I resolved to try what I could do in it: And having projected the best Methods I could think of for the effecting it, I found yet so hard a Task, that I did divers Times give it over as desperate: Yet, after some Intermissions, resuming it againe, I did at last overcome the Difficulty; but with so much Paines and Expense of Time as I am not willing to mention; though yet I did not repent of that Labour, when I had discovered thereby, that it was a Businesse, which though with much Difficulty, was yet capable to bee effected.<!--p.13

“It hath been my Lot to live in a time, wherein have been many and great Changes and Alterations. It hath been my endeavour all along, to act by moderate Principles, between the Extremities on either hand, in a moderate compliance with the Powers in being,”

Dr. Wallis's Account of some Passages of his own Life (1696)
Context: It hath been my Lot to live in a time, wherein have been many and great Changes and Alterations. It hath been my endeavour all along, to act by moderate Principles, between the Extremities on either hand, in a moderate compliance with the Powers in being, in those places, where it hath been my Lot to live, without the fierce and violent animosities usual in such Cases, against all, that did not act just as I did, knowing that there were many worthy Persons engaged on either side. And willing whatever side was upmost, to promote (as I was able) any good design for the true Interest of Religion, of Learning, and the publick good; and ready so to do good Offices, as there was Opportunity; And, if things could not be just, as I could wish, to make the best of what is: And hereby, (thro' God's gracious Providence) have been able to live easy, and useful, though not Great.<!--p. clxix

“Suppose we a certain Number of things exposed, different each from other, as a, b, c, d, e, &c.; The question is, how many ways the order of these may be varied? as, for instance, how many changes may be Rung upon a certain Number of Bells; or, how many ways (by way of Anagram) a certain Number of (different) Letters may be differently ordered?
Alt.1,21) If the thing exposed be but One, as a, it is certain, that the order can be but one. That is 1.
2) If Two be exposed, as a, b, it is also manifest, that they may be taken in a double order, as ab, ba, and no more. That is 1 x 2 = 2. Alt.3
3) If Three be exposed; as a, b, c: Then, beginning with a, the other two b, c, may (by art. 2,) be disposed according to Two different orders, as bc, cb; whence arise Two Changes (or varieties of order) beginning with a as abc, acb: And, in like manner it may be shewed, that there be as many beginning with b; because the other two, a, c, may be so varied, as bac, bca. And again as many beginning with c as cab, cba. And therefore, in all, Three times Two. That is 1 x 2, x 3 = 6.
Alt.34) If Four be exposed as a, b, c, d; Then, beginning with a, the other Three may (by art. preceeding) be disposed six several ways. And (by the same reason) as many beginning with b, and as many beginning with c, and as many beginning with d. And therefore, in all, Four times six, or 24. That is, the Number answering to the case next foregoing, so many times taken as is the Number of things here exposed. That is 1 x 2 x 3, x 4 = 6 x 4 = 24.
5) And in like manner it may be shewed, that this Number 24 Multiplied by 5, that is 120 = 24 x 5 = 1 x 2 x 3 x 4 x 5, is the number of alternations (or changes of order) of Five things exposed. (Or, the Number of Changes on Five Bells.) For each of these five being put in the first place, the other four will (by art. preceeding) admit of 24 varieties, that is, in all, five times 24. And in like manner, this Number 120 Multiplied by 6, shews the Number of Alternations of 6 things exposed; and so onward, by continual Multiplication by the conse quent Numbers 7, 8, 9, &c.;
6) That is, how many so ever of Numbers, in their natural Consecution, beginning from 1, being continually Multiplied, give us the Number of Alternations (or Change of order) of which so many things are capable as is the last of the Numbers so Multiplied. As for instance, the Number of Changes in Ringing Five Bells, is 1 x 2 x 3 x 4 x 5 = 120. In Six Bells, 1 x 2 x 3 x 4 x 5 x 6 = 120 x 6 = 720. In Seven Bells, 720 x 7 = 5040. In Eight Bells, 5040 x 8 = 40320, And so onward, as far as we please.”

Source: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.II Of Alternations, or the different Change of Order, in any Number of Things proposed.