“The man who succeeds above his fellows is the one who, early in life, clearly discerns his object, and towards that object habitually directs his powers. Even genius itself is but fine observation strengthened by fixity of purpose. Every man who observes vigilantly and resolves steadfastly grows unconsciously into genius.”
Caxtoniana: Hints on Mental Culture (1862)
Help us to complete the source, original and additional information
Edward Bulwer-Lytton 31
English novelist, poet, playwright, and politician 1803–1873Related quotes

“The man who is tenacious of purpose in a rightful cause is not shaken from his firm resolve by the frenzy of his fellow citizens clamoring for what is wrong, or by the tyrant's threatening countenance.”
Iustum et tenacem propositi virum
non civium ardor prava iubentium,
non vultus instantis tyranni
mente quatit solida.
Book III, ode iii, line 1
Odes (c. 23 BC and 13 BC)
Source: Dictionary of Burning Words of Brilliant Writers (1895), P. 239.
Source: Dictionary of Burning Words of Brilliant Writers (1895), p. 128.

Einen Menschen verstehen heißt also: auch er sein. Der geniale Mensch aber offenbarte sich an jenen Beispielen eben als der Mensch, welcher ungleich mehr Wesen versteht als der mittelmäßige. Goethe soll von sich gesagt haben, es gebe kein Laster und kein Verbrechen, zu dem er nicht die Anlage in sich verspürt, das er nicht in irgend einem Zeitpunkte seines Lebens vollauf verstanden habe. Der geniale Mensch ist also komplizierter, zusammengesetzter, reicher; und ein Mensch ist um so genialer zu nennen, je mehr Menschen er in sich vereinigt, und zwar, wie hinzugefügt werden muß, je lebendiger, mit je größerer Intensität er die anderen Menschen in sich hat.
Source: Sex and Character (1903), p. 106.

Attributed to Montucla in Augustus De Morgan, A Budget of Paradoxes, (London, 1872), p. 96; Cited in: Robert Edouard Moritz. Memorabilia mathematica; or, The philomath's quotation-book, (1914) p. 366
About Gregory St. Vincent, described by De Morgan as "the greatest of circle-squarers, and his investigations led him into many truths: he found the property of the arc of the hyperbola which led to Napier's logarithms being called hyperbolic."

1830s, The American Scholar http://www.emersoncentral.com/amscholar.htm (1837)