“After ten years of reflection such a principle resulted from a paradox upon which I had already hit at the age of sixteen: If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam as a spatially oscillatory electromagnetic field at rest. However, there seems to be no such thing, whether on the bases of experience or according to Maxwell's equations.”
1940s, "Autobiographical Notes" (1949)
Context: Reflections of this type made it clear to me as long ago as shortly after 1900, i. e., shortly after Planck's trailblazing work, that neither mechanics nor electrodynamics could (except in limiting cases) claim exact validity. By and by I despaired of the possibility of discovering the true laws by means of constructive efforts based on known facts. The longer and the more despairingly I tried, the more I came to the conviction that only the discovery of a universal formal principle could lead us to assured results.... How, then, could such a universal principle be found? After ten years of reflection such a principle resulted from a paradox upon which I had already hit at the age of sixteen: If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam as a spatially oscillatory electromagnetic field at rest. However, there seems to be no such thing, whether on the bases of experience or according to Maxwell's equations. From the very beginning it appeared to me intuitively clear that, judged from the stand-point of such an observer, everything would have to happen according to the same laws as for an observer who, relative to the earth, was at rest.
Help us to complete the source, original and additional information
Albert Einstein 702
German-born physicist and founder of the theory of relativi… 1879–1955Related quotes

Lecture at Kings College (1862) as quoted by F. V. Jones, "The Man Who Paved the Way for Wireless," New Scientist (Nov 1, 1979) p. 348 & Andrey Vyshedskiy, On The Origin Of The Human Mind 2nd edition

Letter to C. Hockin, Esq. (Sept 7, 1864) as quoted by Lewis Campbell, William Garnett, The Life of James Clerk Maxwell: With Selections from His Correspondence and Occasional Writings https://books.google.com/books?id=B7gEAAAAYAAJ (1884)

The Structure of the Universe: An Introduction to Cosmology (1949)

the conclusion of the historical Stern-Gerlach experiment, in The Method of Molecular Rays http://nobelprize.org/nobel_prizes/physics/laureates/1943/stern-lecture.html, Nobel Lecture, December 12, 1946.

A Dynamical Theory of the Electromagnetic Field (1864), §20.
Context: The general equations are next applied to the case of a magnetic disturbance propagated through a non-conductive field, and it is shown that the only disturbances which can be so propagated are those which are transverse to the direction of propagation, and that the velocity of propagation is the velocity v, found from experiments such as those of Weber, which expresses the number of electrostatic units of electricity which are contained in one electromagnetic unit. This velocity is so nearly that of light, that it seems we have strong reason to conclude that light itself (including radiant heat, and other radiations if any) is an electromagnetic disturbance in the form of waves propagated through the electromagnetic field according to electromagnetic laws.

“Can I forget that beam of light, the white-handed daughter of kings?”
"Cath-Loda", Duan I
The Poems of Ossian