1950s, The Russell-Einstein Manifesto (1955)
“I think we should not be in a great rush to deal with this issue. We should be patient and find the most suitable time to do away with the suspension. If we decide to start enrichment in the face of opposition by the West, we must find the best time and the most favorable conditions, and if we decide to work with the West, we must utilize all our capabilities and everything that is in our power to achieve our objectives. We should not rush into this. We must move very carefully, in a very calculated manner.”
Discussing Iran's strategy for advancing its nuclear program against the opposition of the international community
2004 speech to the Supreme Cultural Revolution Council
Help us to complete the source, original and additional information
Hassan Rouhani 28
7th President of Islamic Republic of Iran 1948Related quotes
“God knows that we should not despise anything. We must do our best.”
Chantal, p. 28
La joie (Joy) 1929
Address, Provincial Convention, July 16, 1952.
Speech at McKay Events Center in Orem, Utah, September 22, 2000. http://renewamerica.us/archives/speeches/00_09_22mckay.htm.
2000
Fifth annual Message http://avalon.law.yale.edu/18th_century/washs05.asp (3 December 1793)
1790s
Source: The Writings of George Washington from the Original Manuscript Sources 1745-1799 Volume 39 (General Index O-Z List of Letters) - Leather Bound
Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Context: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.