“In the work of Vieta the analytic methods replaced the geometric, and his solutions of the quadratic equation were therefore a distinct advance upon those of his predecessors. For example, to solve the equation x^2 + ax + b = 0 he placed u + z for x. He then hadu^2 + (2z + a)u +(z^2 + az + b) = 0.He now let 2z + a = 0, whence z = -\frac{1}{2}a,and this gaveu^2 - \frac{1}{4}(a^2 - 4b) = 0.
u = \pm \frac{1}{2} \sqrt{a^2 - 4b}.andx = u + z = -\frac{1}{2}a \pm \sqrt{a^2 - 4b}.</center”

Source: History of Mathematics (1925) Vol.2, p.449

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "In the work of Vieta the analytic methods replaced the geometric, and his solutions of the quadratic equation were ther…" by David Eugene Smith?
David Eugene Smith photo
David Eugene Smith 33
American mathematician 1860–1944

Related quotes

David Eugene Smith photo
Thomas Little Heath photo

“The discovery of Hippocrates amounted to the discovery of the fact that from the relation
(1)\frac{a}{x} = \frac{x}{y} = \frac{y}{b}it follows that(\frac{a}{x})^3 = [\frac{a}{x} \cdot \frac{x}{y} \cdot \frac{y}{b} =] \frac{a}{b}and if a = 2b, [then (\frac{a}{x})^3 = 2, and]a^3 = 2x^3.The equations (1) are equivalent [by reducing to common denominators or cross multiplication] to the three equations
(2)x^2 = ay, y^2 = bx, xy = ab[or equivalently…y = \frac{x^2}{a}, x = \frac{y^2}{b}, y = \frac{ab}{x} ]Doubling the Cube
the 2 solutions of Menaechmusand the solutions of Menaechmus described by Eutocius amount to the determination of a point as the intersection of the curves represented in a rectangular system of Cartesian coordinates by any two of the equations (2).
Let AO, BO be straight lines placed so as to form a right angle at O, and of length a, b respectively. Produce BO to x and AO to y.
The first solution now consists in drawing a parabola, with vertex O and axis Ox, such that its parameter is equal to BO or b, and a hyperbola with Ox, Oy as asymptotes such that the rectangle under the distances of any point on the curve from Ox, Oy respectively is equal to the rectangle under AO, BO i. e. to ab. If P be the point of intersection of the parabola and hyperbola, and PN, PM be drawn perpendicular to Ox, Oy, i. e. if PN, PM be denoted by y, x, the coordinates of the point P, we shall have

\begin{cases}y^2 = b. ON = b. PM = bx\\ and\\ xy = PM. PN = ab\end{cases}whence\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.
In the second solution of Menaechmus we are to draw the parabola described in the first solution and also the parabola whose vertex is O, axis Oy and parameter equal to a.”

Thomas Little Heath (1861–1940) British civil servant and academic

The point P where the two parabolas intersect is given by<center><math>\begin{cases}y^2 = bx\\x^2 = ay\end{cases}</math></center>whence, as before,<center><math>\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.</math></center>
Apollonius of Perga (1896)

David Eugene Smith photo
Gerald James Whitrow photo
David Eugene Smith photo
Frank Wilczek photo
Florian Cajori photo

Related topics