“But if some mind very different from ours were to look upon some property of some curved line as we do on the evenness of a straight line, he would not recognize as such the evenness of a straight line; nor would he arrange the elements of his geometry according to that very different system, and would investigate quite other relationships as I have suggested in my notes.
We fashion our geometry on the properties of a straight line because that seems to us to be the simplest of all. But really all lines that are continuous and of a uniform nature are just as simple as one another. Another kind of mind which might form an equally clear mental perception of some property of any one of these curves, as we do of the congruence of a straight line, might believe these curves to be the simplest of all, and from that property of these curves build up the elements of a very different geometry, referring all other curves to that one, just as we compare them to a straight line. Indeed, these minds, if they noticed and formed an extremely clear perception of some property of, say, the parabola, would not seek, as our geometers do, to rectify the parabola, they would endeavor, if one may coin the expression, to parabolify the straight line.”
"Boscovich's mathematics", an article by J. F. Scott, in the book Roger Joseph Boscovich (1961) edited by Lancelot Law Whyte.
"Transient pressure analysis in composite reservoirs" (1982) by Raymond W. K. Tang and William E. Brigham.
"Non-Newtonian Calculus" (1972) by Michael Grossman and Robert Katz.
Help us to complete the source, original and additional information
Roger Joseph Boscovich 5
Croat-Italian physicist 1711–1787Related quotes

The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)

“Our course of advance … is neither a straight line nor a curve. It is a series of dots and dashes.”
Other writings, The Paradoxes of Legal Science (1928)
Context: Our course of advance... is neither a straight line nor a curve. It is a series of dots and dashes. Progress comes per saltum, by successive compromises between extremes, compromises often … between "positivism and idealism". The notion that a jurist can dispense with any consideration as to what the law ought to be arises from the fiction that the law is a complete and closed system, and that judges and jurists are mere automata to record its will or phonographs to pronounce its provisions.

“The straight line belongs to Man. The curved line belongs to God.”
The real author seems to be Pierre Albert-Birot https://books.google.com/books?id=3Ul51CwjUOcC&pg=PA290&dq=%22the+curved+line+that+belongs+let%27s+say+to+God+and+the+straight+line+that+belongs+to+man%22&hl=de&sa=X&redir_esc=y#v=onepage&q=%22the%20curved%20line%20that%20belongs%20let%27s%20say%20to%20God%20and%20the%20straight%20line%20that%20belongs%20to%20man%22&f=false.
Attributed
Source: Mathematical Thought from Ancient to Modern Times (1972), p. 454

Source: Lectures on Philosophy (1959), p. 87

Book II, Chapter 1, "The Rival Conceptions of God"
Mere Christianity (1952)
Context: My argument against God was that the universe seemed so cruel and unjust. But how had I got this idea of just and unjust? A man does not call a line crooked unless he has some idea of a straight line. What was I comparing this universe with when I called it unjust?