“There are a number of theorems in ordinary algebra, which, though apparently proved to be true only for symbols representing numbers, admit of a much more extended application. Such theorems depend only on the laws of combination to which the symbols are subject, and are therefore true for all symbols, whatever their nature may be, which are subject to the same laws of combination. The laws with which we have here concern are few in number, and may be stated in the following manner. Let a, b represent two operations, u, v two subjects on which they operate, then the laws are
(1) ab(u) = ba (u),
(2) a(u + v) = a (u) + a (v),
(3) am. an. u = am + n. u.
The first of these laws is called the commutative law, and symbols which are subject to it are called commutative symbols. The second law is called distributive, and the symbols subject to it distributive symbols. The third law is not so much a law of combination of the operation denoted by a, but rather of the operation performed on a, which is indicated by the index affixed to a. It may be conveniently called the law of repetition, since the most obvious and important case of it is that in which m and n are integers, and am therefore indicates the repetition m times of the operation a.”

That these are the laws employed in the demonstration of the principal theorems in Algebra, a slight examination of the processes will easily shew ; but they are not confined to symbols of numbers ; they apply also to the symbol used to denote differentiation.
p. 237 http://books.google.com/books?id=8lQ7AQAAIAAJ&pg=PA237; Highlighted section cited in: George Boole " Mr Boole on a General Method in Analysis http://books.google.com/books?pg=PA225-IA15&id=aGwOAAAAIAAJ&hl," Philosophical Transactions, Vol. 134 (1844), p. 225; Other section (partly) cited in: James Gasser (2000) A Boole Anthology: Recent and Classical Studies in the Logic of George Boole,, p. 52
Examples of the processes of the differential and integral calculus, (1841)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "There are a number of theorems in ordinary algebra, which, though apparently proved to be true only for symbols represe…" by Duncan Gregory?
Duncan Gregory photo
Duncan Gregory 4
British mathematician 1813–1844

Related quotes

Duncan Gregory photo

“In this chapter I shall collect those Theorems in the Differential Calculus which, depending only on the laws of combination of the symbols of differentiation, and not on the functions which are operated on by these symbols, may be proved by the method of the separation of the symbols : but as the principles of this method have not as yet found a place in the elementary works on the Calculus, I shall first state? briefly the theory on which it is founded.”

Duncan Gregory (1813–1844) British mathematician

Source: Examples of the processes of the differential and integral calculus, (1841), p. 237; Lead paragraph of Ch. XV, On General Theorems in the Differential Calculus,; Cited in: James Gasser (2000) A Boole Anthology: Recent and Classical Studies in the Logic of George Boole,, p. 52

George Peacock photo
George Boole photo
George Peacock photo
George Boole photo
George Boole photo
George Peacock photo
John Wallis photo

“Let as many Numbers, as you please, be proposed to be Combined: Suppose Five, which we will call a b c d e. Put, in so many Lines, Numbers, in duple proportion, beginning with 1. The Sum (31) is the Number of Sumptions, or Elections; wherein, one or more of them, may several ways be taken. Hence subduct (5) the Number of the Numbers proposed; because each of them may once be taken singly. And the Remainder (26) shews how many ways they may be taken in Combination; (namely, Two or more at once.) And, consequently, how many Products may be had by the Multiplication of any two or more of them so taken. But the same Sum (31) without such Subduction, shews how many Aliquot Parts there are in the greatest of those Products, (that is, in the Number made by the continual Multiplication of all the Numbers proposed,) a b c d e. For every one of those Sumptions, are Aliquot Parts of a b c d e, except the last, (which is the whole,) and instead thereof, 1 is also an Aliquot Part; which makes the number of Aliquot Parts, the same with the Number of Sumptions. Only here is to be understood, (which the Rule should have intimated;) that, all the Numbers proposed, are to be Prime Numbers, and each distinct from the other. For if any of them be Compound Numbers, or any Two of them be the same, the Rule for Aliquot Parts will not hold.”

John Wallis (1616–1703) English mathematician

Source: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.I Of the variety of Elections, or Choice, in taking or leaving One or more, out of a certain Number of things proposed.

Benjamin Peirce photo
Paul Carus photo

Related topics