“What mathematics, therefore are expected to do for the advanced student at the university, Arithmetic, if taught demonstratively, is capable of doing for the children even of the humblest school. It furnishes training in reasoning, and particularly in deductive reasoning. It is a discipline in closeness and continuity of thought. It reveals the nature of fallacies, and refuses to avail itself of unverified assumptions. It is the one department of school-study in which the sceptical and inquisitive spirit has the most legitimate scope; in which authority goes for nothing. In other departments of instruction you have a right to ask for the scholar’s confidence, and to expect many things to be received on your testimony with the understanding that they will be explained and verified afterwards. But here you are justified in saying to your pupil “Believe nothing which you cannot understand. Take nothing for granted.” In short, the proper office of arithmetic is to serve as elementary 268 training in logic. All through your work as teachers you will bear in mind the fundamental difference between knowing and thinking; and will feel how much more important relatively to the health of the intellectual life the habit of thinking is than the power of knowing, or even facility of achieving visible results. But here this principle has special significance. It is by Arithmetic more than by any other subject in the school course that the art of thinking—consecutively, closely, logically—can be effectually taught.”

Source: Lectures on Teaching, (1906), pp. 292-293.

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "What mathematics, therefore are expected to do for the advanced student at the university, Arithmetic, if taught demons…" by Joshua Girling Fitch?
Joshua Girling Fitch photo
Joshua Girling Fitch 6
British educationalist 1824–1903

Related quotes

Milton Friedman photo
George Bernard Shaw photo
Nicholas Murray Butler photo
David Eugene Smith photo
George Long photo

“I believe that many children in the humblest schools will observe and learn as well as those in other schools.”

George Long (1800–1879) English classical scholar

An Old Man's Thoughts on Many Things, Of Education I
Context: The difficulty is to find teachers, particularly in the humble kind of schools, who can explain the elements of astronomy; but if teachers were taught such matters, they could explain them to others, and some of the teachers would be better employed in this way than in learning and teaching other things.... I believe that many children in the humblest schools will observe and learn as well as those in other schools. When children are younger, we must use other ways of training the eye to observe.

Augustus De Morgan photo

“A finished or even a competent reasoner is not the work of nature alone… education develops faculties which would otherwise never have manifested their existence. It is, therefore, as necessary to learn to reason before we can expect to be able to reason, as it is to learn to swim or fence, in order to attain either of those arts. Now, something must be reasoned upon, it matters not much what it is, provided that it can be reasoned upon with certainty. The properties of mind or matter, or the study of languages, mathematics, or natural history may be chosen for this purpose. Now, of all these, it is desirable to choose the one… in which we can find out by other means, such as measurement and ocular demonstration of all sorts, whether the results are true or not.
.. Now the mathematics are peculiarly well adapted for this purpose, on the following grounds:—
1. Every term is distinctly explained, and has but one meaning, and it is rarely that two words are employed to mean the same thing.
2. The first principles are self-evident, and, though derived from observation, do not require more of it than has been made by children in general.
3. The demonstration is strictly logical, taking nothing for granted except the self-evident first principles, resting nothing upon probability, and entirely independent of authority and opinion.
4. When the conclusion is attained by reasoning, its truth or falsehood can be ascertained, in geometry by actual measurement, in algebra by common arithmetical calculation. This gives confidence, and is absolutely necessary, if… reason is not to be the instructor, but the pupil.
5. There are no words whose meanings are so much alike that the ideas which they stand for may be confounded.
…These are the principal grounds on which… the utility of mathematical studies may be shewn to rest, as a discipline for the reasoning powers. But the habits of mind which these studies have a tendency to form are valuable in the highest degree. The most important of all is the power of concentrating the ideas which a successful study of them increases where it did exist, and creates where it did not. A difficult position or a new method of passing from one proposition to another, arrests all the attention, and forces the united faculties to use their utmost exertions. The habit of mind thus formed soon extends itself to other pursuits, and is beneficially felt in all the business of life.”

Augustus De Morgan (1806–1871) British mathematician, philosopher and university teacher (1806-1871)

Source: On the Study and Difficulties of Mathematics (1831), Ch. I.

Henri Poincaré photo

“Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive? …If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.”

Source: Science and Hypothesis (1901), Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6

Leonardo Da Vinci photo
Seymour Papert photo
Benjamin Creme photo

Related topics