“These formulae [in (1) and (2) above] may be shown to be valid for a circle or a triangle in the hyperbolic plane… for which K < 0. Accordingly here the perimeter and area of a circle are greater, and the sum of the three angles of a triangle are less, than the corresponding quantities in the Euclidean plane. It can also be shown that each full line is of infinite length, that through a given point outside a given line an infinity of full lines may be drawn which do not meet the given line (the two lines bounding the family are said to be "parallel" to the given line), and that two full lines which meet do so in but one point.”

Geometry as a Branch of Physics (1949)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "These formulae [in (1) and (2) above] may be shown to be valid for a circle or a triangle in the hyperbolic plane… for …" by Howard P. Robertson?
Howard P. Robertson photo
Howard P. Robertson 28
American mathematician and physicist 1903–1961

Related quotes

John Wallis photo
E. W. Hobson photo
Aristarchus of Samos photo
James Bradley photo

“Hitherto we have considered the apparent motion of the star about its true place, as made only in a plane parallel to the ecliptic, in which case it appears to describe a circle in that plane; but since, when we judge of the place and motion of a star, we conceive it to be in the surface of a sphere, whose centre is our eye, 'twill be necessary to reduce the motion in that plane to what it would really appear on the surface of such a sphere, or (which will be equivalent) to what it would appear on a plane touching such a sphere in the star's true place. Now in the present case, where we conceive the eye at an indefinite distance, this will be done by letting fall perpendiculars from each point of the circle on such a plane, which from the nature of the orthographic projection will form an ellipsis, whose greater axis will be equal to the diameter of that circle, and the lesser axis to the greater as the sine of the star's latitude to the radius, for this latter plane being perpendicular to a line drawn from the centre of the sphere through the star's true place, which line is inclined to the ecliptic in an angle equal to the star's latitude; the touching plane will be inclined to the plane of the ecliptic in an angle equal to the complement of the latitude. But it is a known proposition in the orthographic projection of the sphere, that any circle inclined to the plane of the projection, to which lines drawn from the eye, supposed at an infinite distance, are at right angles, is projected into an ellipsis, having its longer axis equal to its diameter, and its shorter to twice the cosine of the inclination to the plane of the projection, half the longer axis or diameter being the radius.
Such an ellipse will be formed in our present case…”

James Bradley (1693–1762) English astronomer; Astronomer Royal

Miscellaneous Works and Correspondence (1832), Demonstration of the Rules relating to the Apparent Motion of the Fixed Stars upon account of the Motion of Light.

Bernhard Riemann photo

“Let us imagine that from any given point the system of shortest lines going out from it is constructed; the position of an arbitrary point may then be determined by the initial direction of the geodesic in which it lies, and by its distance measured along that line from the origin. It can therefore be expressed in terms of the ratios dx0 of the quantities dx in this geodesic, and of the length s of this line. …the square of the line-element is \sum (dx)^2 for infinitesimal values of the x, but the term of next order in it is equal to a homogeneous function of the second order… an infinitesimal, therefore, of the fourth order; so that we obtain a finite quantity on dividing this by the square of the infinitesimal triangle, whose vertices are (0,0,0,…), (x1, x2, x3,…), (dx1, dx2, dx3,…). This quantity retains the same value so long as… the two geodesics from 0 to x and from 0 to dx remain in the same surface-element; it depends therefore only on place and direction. It is obviously zero when the manifold represented is flat, i. e., when the squared line-element is reducible to \sum (dx)^2, and may therefore be regarded as the measure of the deviation of the manifoldness from flatness at the given point in the given surface-direction. Multiplied by -¾ it becomes equal to the quantity which Privy Councillor Gauss has called the total curvature of a surface. …The measure-relations of a manifoldness in which the line-element is the square root of a quadric differential may be expressed in a manner wholly independent of the choice of independent variables. A method entirely similar may for this purpose be applied also to the manifoldness in which the line-element has a less simple expression, e. g., the fourth root of a quartic differential. In this case the line-element, generally speaking, is no longer reducible to the form of the square root of a sum of squares, and therefore the deviation from flatness in the squared line-element is an infinitesimal of the second order, while in those manifoldnesses it was of the fourth order. This property of the last-named continua may thus be called flatness of the smallest parts. The most important property of these continua for our present purpose, for whose sake alone they are here investigated, is that the relations of the twofold ones may be geometrically represented by surfaces, and of the morefold ones may be reduced to those of the surfaces included in them…”

Bernhard Riemann (1826–1866) German mathematician

On the Hypotheses which lie at the Bases of Geometry (1873)

Hans Reichenbach photo

“It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. …the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection… analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". …If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels.”

Hans Reichenbach (1891–1953) American philosopher

The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)

Related topics