“I would teach the world how the Greeks proved, more than 2,000 years ago, that there are infinitely many prime numbers. In my mind, this discovery is the beginning of mathematics – when humankind realised that, by pure thought alone, it could prove eternal truths of the universe.
Prime numbers are the indivisible numbers, numbers that can be divided only by themselves and one. They are the most important numbers in mathematics, because every number is built by multiplying prime numbers together – for example, 60 = 2 x 2 x 3 x 5. They are like the atoms of arithmetic, the hydrogen and oxygen of the world of numbers.”

In "Life lessons" http://www.theguardian.com/science/2005/apr/07/science.highereducation?fb_ref=desktop The Guardian (7 April 2005)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "I would teach the world how the Greeks proved, more than 2,000 years ago, that there are infinitely many prime numbers.…" by Marcus du Sautoy?
Marcus du Sautoy photo
Marcus du Sautoy 3
British professor of mathematics 1965

Related quotes

Bill Gates photo

“The obvious mathematical breakthrough would be development of an easy way to factor large prime numbers.”

Source: The Road Ahead (1995), p. 265 in hardcover edition, corrected in paperback

Euclid photo

“A prime number is one (which is) measured by a unit alone.”

Elements, Book 7, Definition 11 (12 in certain editions)
Euclid’s Elements

Diophantus photo
Paul Erdős photo

“God may not play dice with the universe, but something strange is going on with the prime numbers.”

Paul Erdős (1913–1996) Hungarian mathematician and freelancer

Referencing Albert Einstein's famous remark that "God does not play dice with the universe", this is attributed to Erdős in "Mathematics : Homage to an Itinerant Master" by D. Mackenzie, in Science 275:759 (1997), but has also been stated to be a comment originating in a talk given by Carl Pomerance on the Erdős-Kac theorem, in San Diego in January 1997, a few months after Erdős's death. Confirmation of this by Pomerance is reported in a statement posted to the School of Engineering, Computer Science & Mathematics, University of Exeter http://empslocal.ex.ac.uk/people/staff/mrwatkin//kac-pomerance.txt, where he states it was a paraphrase of something he imagined Erdős and Mark Kac might have said, and presented in a slide-show, which subsequently became reported in a newspaper as a genuine quote of Erdős the next day. In his slide show he had them both reply to Einstein's assertion: "Maybe so, but something is going on with the primes."
Misattributed

Carl Sagan photo
Carl Friedrich Gauss photo

“The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length. … Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated.”

Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret. … [P]raetereaque scientiae dignitas requirere videtur, ut omnia subsidia ad solutionem problematis tam elegantis ac celebris sedulo excolantur.
Disquisitiones Arithmeticae (1801): Article 329

John Wallis photo

“Let as many Numbers, as you please, be proposed to be Combined: Suppose Five, which we will call a b c d e. Put, in so many Lines, Numbers, in duple proportion, beginning with 1. The Sum (31) is the Number of Sumptions, or Elections; wherein, one or more of them, may several ways be taken. Hence subduct (5) the Number of the Numbers proposed; because each of them may once be taken singly. And the Remainder (26) shews how many ways they may be taken in Combination; (namely, Two or more at once.) And, consequently, how many Products may be had by the Multiplication of any two or more of them so taken. But the same Sum (31) without such Subduction, shews how many Aliquot Parts there are in the greatest of those Products, (that is, in the Number made by the continual Multiplication of all the Numbers proposed,) a b c d e. For every one of those Sumptions, are Aliquot Parts of a b c d e, except the last, (which is the whole,) and instead thereof, 1 is also an Aliquot Part; which makes the number of Aliquot Parts, the same with the Number of Sumptions. Only here is to be understood, (which the Rule should have intimated;) that, all the Numbers proposed, are to be Prime Numbers, and each distinct from the other. For if any of them be Compound Numbers, or any Two of them be the same, the Rule for Aliquot Parts will not hold.”

John Wallis (1616–1703) English mathematician

Source: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.I Of the variety of Elections, or Choice, in taking or leaving One or more, out of a certain Number of things proposed.

John Derbyshire photo

Related topics