
Miscellaneous Works and Correspondence (1832), To Mr. Cleveland Secretary of the Admiralty (April 14, 1760)
Miscellaneous Works and Correspondence (1832), To Mr. Cleveland Secretary of the Admiralty (April 14, 1760)
Miscellaneous Works and Correspondence (1832), To Mr. Cleveland Secretary of the Admiralty (April 14, 1760)
Miscellaneous Works and Correspondence (1832), To Mr. Cleveland Secretary of the Admiralty (April 14, 1760)
That each of them became stationary, or was farthest North or South, when they passed over my Zenith at six of the Clock, either in the Morning or Evening. I perceived likewise, that whatever Situation the Stars were in with respect to the cardinal Points of the Ecliptick, the apparent Motion of every one tended the same Way, when they passed my Instrument about the same Hour of the Day or Night; for they all moved Southward, while they passed in the Day, and Northward in the Night; so that each was farthest North, when it came about Six of the Clock in the Evening, and farthest South when it came about Six in the Morning.
A Letter from the Reverend Mr. James Bradley Savilian Proffesor of Astronomy at Oxford, and F.R.S. to Dr. Edmund Halley, Astronom. Reg. &c. giving an Account of a New Discovered Motion of the Fix'd Stars. Philosophical Transactions (Jan 1, 1727) 1727-1728 No. 406. vol. XXXV. pp. 637-661 http://rstl.royalsocietypublishing.org/content/35/399-406/637.full.pdf+html.
Miscellaneous Works and Correspondence (1832), To Mr. Cleveland Secretary of the Admiralty (April 14, 1760)
Theoria motus corporum coelestium in sectionibus conicis solem ambientum (1809) Tr. Charles Henry Davis as Theory of the Motion of the Heavenly Bodies moving about the Sun in Conic Sections http://books.google.com/books?id=cspWAAAAMAAJ& (1857)
Context: The principle that the sum of the squares of the differences between the observed and computed quantities must be a minimum may, in the following manner, be considered independently of the calculus of probabilities. When the number of unknown quantities is equal to the number of the observed quantities depending on them, the former may be so determined as exactly to satisfy the latter. But when the number of the former is less than that of the latter, an absolutely exact agreement cannot be obtained, unless the observations possess absolute accuracy. In this case care must be taken to establish the best possible agreement, or to diminish as far as practicable the differences. This idea, however, from its nature, involves something vague. For, although a system of values for the unknown quantities which makes all the differences respectively less than another system, is without doubt to be preferred to the latter, still the choice between two systems, one of which presents a better agreement in some observations, the other in others, is left in a measure to our judgment, and innumerable different principles can be proposed by which the former condition is satisfied. Denoting the differences between observation and calculation by A, A’, A’’, etc., the first condition will be satisfied not only if AA + A’ A’ + A’’ A’’ + etc., is a minimum (which is our principle) but also if A4 + A’4 + A’’4 + etc., or A6 + A’6 + A’’6 + etc., or in general, if the sum of any of the powers with an even exponent becomes a minimum. But of all these principles ours is the most simple; by the others we should be led into the most complicated calculations.
Preface of M. Quetelet
A Treatise on Man and the Development of His Faculties (1842)
Chapter VIII http://utc.iath.virginia.edu/abolitn/abeslmca5t.html
1830s, An Appeal on Behalf of That Class of Americans Called Africans (1833)