Quotes from book
Science and Hypothesis

Science and Hypothesis
Henri Poincaré Original title La Science et l'Hypothèse (French)

Science and Hypothesis is a book by French mathematician Henri Poincaré, first published in 1902. Aimed at a non-specialist readership, it deals with mathematics, space, physics and nature. It puts forward the theses that absolute truth in science is unattainable, and that many commonly held beliefs of scientists are held as convenient conventions rather than because they are more valid than the alternatives.In this book, Poincaré describes open scientific questions regarding the photo-electric effect, Brownian motion, and the relativity of physical laws in space.


Henri Poincaré photo

“Induction applied to the physical sciences is always uncertain, because it rests on the belief in a general order of the universe, an order outside of us.”

Source: Science and Hypothesis (1901), Ch. I. (1905) Tr. George Bruce Halstead
Context: But, one will say, if raw experience can not legitimatize reasoning by recurrence, is it so of experiment aided by induction? We see successively that a theorem is true of the number 1, of the number 2, of the number 3 and so on; the law is evident, we say, and it has the same warranty as every physical law based on observations, whose number is very great but limited. But there is an essential difference. Induction applied to the physical sciences is always uncertain, because it rests on the belief in a general order of the universe, an order outside of us. Mathematical induction, that is, demonstration by recurrence, on the contrary, imposes itself necessarily, because it is only the affirmation of a property of the mind itself.<!--pp.13-14

Henri Poincaré photo

“To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.”

Douter de tout ou tout croire, ce sont deux solutions également commodes, qui l'une et l'autre nous dispensent de réfléchir.
Preface, Dover abridged edition (1952), p. xxii
Science and Hypothesis (1901)

Henri Poincaré photo

“Mathematicians do not study objects, but the relations between objects; to them it is a matter of indifference if these objects are replaced by others, provided that the relations do not change. Matter does not engage their attention, they are interested in form alone.”

Les mathématiciens n'étudient pas des objets, mais des relations entre les objets ; il leur est donc indifférent de remplacer ces objets par d'autres, pourvu que les relations ne changent pas. La matière ne leur importe pas, la forme seule les intéresse.
Source: Science and Hypothesis (1901), Ch. II: Dover abridged edition (1952), p. 20

Henri Poincaré photo
Henri Poincaré photo
Henri Poincaré photo

“If, then, a phenomenon admits of a complete mechanical explanation, it will admit of an infinity of others, that will render an account equally well of all the particulars revealed by experiment.”

Si donc un phénomène comporte une explication mécanique complète, il en comportera une infinité d’autres qui rendront également bien compte de toutes les particularités révélées par l’expérience.
Source: Science and Hypothesis (1901), Ch. XII: Optics and Electricity, as translated by George Bruce Halsted (1913)

Henri Poincaré photo

“… treatises on mechanics do not clearly distinguish between what is experiment, what is mathematical reasoning, what is convention, and what is hypothesis.”

... les traités de mécanique ne distinguent pas bien nettement ce qui est expérience, ce qui est raisonnement mathématique, ce qui est convention, ce qui est hypothèse.
Source: Science and Hypothesis (1901), Ch. VI: The Classical Mechanics, Tr. George Bruce Halsted (1913)

Henri Poincaré photo
Henri Poincaré photo
Henri Poincaré photo
Henri Poincaré photo

“When we say force is the cause of motion, we talk metaphysics”

Source: Science and Hypothesis (1901), Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration?
These difficulties are inextricable.
When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion.
We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed.
We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74

Henri Poincaré photo

“The very possibility of the science of mathematics seems an insoluble contradiction.”

Source: Science and Hypothesis (1901), Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6

Henri Poincaré photo

“For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion.”

Source: Science and Hypothesis (1901), Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration?
These difficulties are inextricable.
When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion.
We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed.
We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74

Henri Poincaré photo

“Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.”

Source: Science and Hypothesis (1901), Ch. IX: Hypotheses in Physics, Tr. George Bruce Halsted (1913)
Context: The Scientist must set in order. Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.

Henri Poincaré photo

“In this domain of arithmetic,.. the mathematical infinite already plays a preponderant rôle, and without it there would be no science, because there would be nothing general.”

Source: Science and Hypothesis (1901), Ch. I. (1905) Tr. George Bruce Halstead
Context: This procedure is the demonstration by recurrence. We first establish a theorem for n = 1; then we show that if it is true of n - 1, it is true of n, and thence conclude that it is true for all the whole numbers... Here then we have the mathematical reasoning par excellence, and we must examine it more closely.
... The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms.
... to arrive at the smallest theorem [we] can not dispense with the aid of reasoning by recurrence, for this is an instrument which enables us to pass from the finite to the infinite.
This instrument is always useful, for, allowing us to overleap at a bound as many stages as we wish, it spares us verifications, long, irksome and monotonous, which would quickly become impracticable. But it becomes indispensable as soon as we aim at the general theorem...
In this domain of arithmetic,.. the mathematical infinite already plays a preponderant rôle, and without it there would be no science, because there would be nothing general.<!--pp.10-12

Henri Poincaré photo

“When shall we say two forces are equal?”

Source: Science and Hypothesis (1901), Ch. VI: The Classical Mechanics (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: What is mass? According to Newton, it is the product of the volume by the density. According to Thomson and Tait, it would be better to say that density is the quotient of the mass by the volume. What is force? It, is replies Lagrange, that which moves or tends to move a body. It is, Kirchhoff will say, the product of the mass by the acceleration. But then, why not say the mass is the quotient of the force by the acceleration?
These difficulties are inextricable.
When we say force is the cause of motion, we talk metaphysics, and this definition, if one were content with it, would be absolutely sterile. For a definition to be of any use, it must teach us to measure force; moreover that suffices; it is not at all necessary that it teach us what force is in itself, nor whether it is the cause or the effect of motion.
We must therefore first define the equality of two forces. When shall we say two forces are equal? It is, we are told, when, applied to the same mass, they impress upon it the same acceleration, or when, opposed directly one to the other, they produce equilibrium. This definition is only a sham. A force applied to a body can not be uncoupled to hook it up to another body, as one uncouples a locomotive to attach it to another train. It is therefore impossible to know what acceleration such a force, applied to such a body, would impress upon such an other body, if it were applied to it. It is impossible to know how two forces which are not directly opposed would act, if they were directly opposed.
We are... obliged in the definition of the equality of the two forces to bring in the principle of the equality of action and reaction; on this account, this principle must no longer be regarded as an experimental law, but as a definition.<!--pp.73-74

Henri Poincaré photo

“The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms.”

Source: Science and Hypothesis (1901), Ch. I. (1905) Tr. George Bruce Halstead
Context: This procedure is the demonstration by recurrence. We first establish a theorem for n = 1; then we show that if it is true of n - 1, it is true of n, and thence conclude that it is true for all the whole numbers... Here then we have the mathematical reasoning par excellence, and we must examine it more closely.
... The essential characteristic of reasoning by recurrence is that it contains, condensed, so to speak, in a single formula, an infinity of syllogisms.
... to arrive at the smallest theorem [we] can not dispense with the aid of reasoning by recurrence, for this is an instrument which enables us to pass from the finite to the infinite.
This instrument is always useful, for, allowing us to overleap at a bound as many stages as we wish, it spares us verifications, long, irksome and monotonous, which would quickly become impracticable. But it becomes indispensable as soon as we aim at the general theorem...
In this domain of arithmetic,.. the mathematical infinite already plays a preponderant rôle, and without it there would be no science, because there would be nothing general.<!--pp.10-12

Henri Poincaré photo

“We must, for example, use language, and our language is necessarily steeped in preconceived ideas.”

Source: Science and Hypothesis (1901), Ch. IX: Hypotheses in Physics, Tr. George Bruce Halsted (1913)
Context: It is often said that experiments should be made without preconceived ideas. That is impossible. Not only would it make every experiment fruitless, but even if we wished to do so, it could not be done. Every man has his own conception of the world, and this he cannot so easily lay aside. We must, for example, use language, and our language is necessarily steeped in preconceived ideas.

Henri Poincaré photo

“Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive? …If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.”

Source: Science and Hypothesis (1901), Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6

Similar authors

Henri Poincaré photo
Henri Poincaré 49
French mathematician, physicist, engineer, and philosopher … 1854–1912
Auguste Comte photo
Auguste Comte 23
French philosopher
Pierre Curie photo
Pierre Curie 1
French physicist
Wilhelm Röntgen photo
Wilhelm Röntgen 6
German physicist
Arthur Schopenhauer photo
Arthur Schopenhauer 261
German philosopher
Thomas Carlyle photo
Thomas Carlyle 481
Scottish philosopher, satirical writer, essayist, historian…
Émile Durkheim photo
Émile Durkheim 43
French sociologist (1858-1917)
Honoré de Balzac photo
Honoré de Balzac 157
French writer
Napoleon I of France photo
Napoleon I of France 259
French general, First Consul and later Emperor of the French