“In love with whole numbers, the Pythagoreans believed that all things could be derived from them. Certainly all other numbers.
So a crisis in doctrine occurred when they discovered that the square root of two was irrational.”

—  Carl Sagan

37 min 45 sec
Cosmos: A Personal Voyage (1990 Update), The Backbone of Night [Episode 7]
Context: There can be an infinite number of polygons, but only five regular solids. Four of the solids were associated with earth, fire, air and water. The cube for example represented earth. These four elements, they thought, make up terrestrial matter. So the fifth solid they mystically associated with the Cosmos. Perhaps it was the substance of the heavens. This fifth solid was called the dodecahedron. Its faces are pentagons, twelve of them. Knowledge of the dodecahedron was considered too dangerous for the public. Ordinary people were to be kept ignorant of the dodecahedron. In love with whole numbers, the Pythagoreans believed that all things could be derived from them. Certainly all other numbers.
So a crisis in doctrine occurred when they discovered that the square root of two was irrational. That is: the square root of two could not be represented as the ratio of two whole numbers, no matter how big they were. "Irrational" originally meant only that. That you can't express a number as a ratio. But for the Pythagoreans it came to mean something else, something threatening, a hint that their world view might not make sense, the other meaning of "irrational".

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "In love with whole numbers, the Pythagoreans believed that all things could be derived from them. Certainly all other n…" by Carl Sagan?
Carl Sagan photo
Carl Sagan 365
American astrophysicist, cosmologist, author and science ed… 1934–1996

Related quotes

Henry Burchard Fine photo
Terry Pratchett photo
Prasanta Chandra Mahalanobis photo
Carl Sagan photo
Diophantus photo
Ray Bradbury photo
Thomas Little Heath photo
John Wallis photo

“Let as many Numbers, as you please, be proposed to be Combined: Suppose Five, which we will call a b c d e. Put, in so many Lines, Numbers, in duple proportion, beginning with 1. The Sum (31) is the Number of Sumptions, or Elections; wherein, one or more of them, may several ways be taken. Hence subduct (5) the Number of the Numbers proposed; because each of them may once be taken singly. And the Remainder (26) shews how many ways they may be taken in Combination; (namely, Two or more at once.) And, consequently, how many Products may be had by the Multiplication of any two or more of them so taken. But the same Sum (31) without such Subduction, shews how many Aliquot Parts there are in the greatest of those Products, (that is, in the Number made by the continual Multiplication of all the Numbers proposed,) a b c d e. For every one of those Sumptions, are Aliquot Parts of a b c d e, except the last, (which is the whole,) and instead thereof, 1 is also an Aliquot Part; which makes the number of Aliquot Parts, the same with the Number of Sumptions. Only here is to be understood, (which the Rule should have intimated;) that, all the Numbers proposed, are to be Prime Numbers, and each distinct from the other. For if any of them be Compound Numbers, or any Two of them be the same, the Rule for Aliquot Parts will not hold.”

John Wallis (1616–1703) English mathematician

Source: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.I Of the variety of Elections, or Choice, in taking or leaving One or more, out of a certain Number of things proposed.

Related topics