“Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive? …If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.”
Source: Science and Hypothesis (1901), Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6
Help us to complete the source, original and additional information
Henri Poincaré 49
French mathematician, physicist, engineer, and philosopher … 1854–1912Related quotes

"The Regressive Method of Discovering the Premises of Mathematics" (1907), in Essays in Analysis (1973), pp. 273–274
1900s
100 Years of Mathematics: a Personal Viewpoint (1981)

Source: 1910s, Introduction to Mathematical Philosophy (1919), Ch. 18: Mathematics and Logic
Source: A Mathematical Dictionary: Or; A Compendious Explication of All Mathematical Terms, 1702, p. 26
The Fourth Dimension simply Explained. (New York, 1910), p. 58. Reported in Moritz (1914); Also cited in: Howard Eves (2012), Foundations and Fundamental Concepts of Mathematics, p. 167

Les Loix du Mouvement et du Repos, déduites d'un Principe Métaphysique (1746)
Source: Information, The New Language of Science (2003), Chapter 16, Unpacking Information, The computer in the service of physics, p. 138

Source: Linear programming and extensions (1963), p. 2

I use the word in the old sense: ...something which is apart from general opinion, either in subject-matter, method, or conclusion. ...Thus in the sixteenth century many spoke of the earth's motion as the paradox of Copernicus, who held the ingenuity of that theory in very high esteem, and some, I think, who even inclined towards it. In the seventeenth century, the depravation of meaning took place... Phillips says paradox is "a thing which seemeth strange"—here is the old meaning...—"and absurd, and is contrary to common opinion," which is an addition due to his own time.
A Budget of Paradoxes (1872)