Arithmetica Universalis (1707)
Context: The Circle is a Geometrical Line, not because it may be express'd by an Æquation, but because its Description is a Postulate. It is not the Simplicity of the Æquation, but the Easiness of the Description, which is to determine the Choice of our Lines for the Construction of Problems. For the Æquation that expresses a Parabola, is more simple than That that expresses a Circle, and yet the Circle, by reason of its more simple Construction, is admitted before it. The Circle and the Conick Sections, if you regard the Dimension of the Æquations, are of the fame Order, and yet the Circle is not number'd with them in the Construction of Problems, but by reason of its simple Description, is depressed to a lower Order, viz. that of a right Line; so that it is not improper to express that by a Circle that may be expressed by a right Line. But it is a Fault to construct that by the Conick Sections which may be constructed by a Circle. Either therefore you must take your Law and Rule from the Dimensions of Æquations as observ'd in a Circle, and so take away the Distinction between Plane and Solid Problems; or else you must grant, that that Law is not so strictly to be observ'd in Lines of superior Kinds, but that some, by reason of their more simple Description, may be preferr'd to others of the same Order, and may be number'd with Lines of inferior Orders in the Construction of Problems.<!--p.228
“But the Moderns advancing yet much farther, have receiv'd into Geometry all Lines that can be express'd by Æquations, and have distinguish'd, according to the Dimensions of the Æquations, those Lines into Kinds; and have made it a Law, that you are not to construct a Problem by a Line of a superior Kind, that may be constructed by one of an inferior one.”
Arithmetica Universalis (1707)
Context: The Antients, as we learn from Pappus, in vain endeavour'd at the Trisection of an Angle, and the finding out of two mean Proportionals by a right line and a Circle. Afterwards they began to consider the Properties of several other Lines. as the Conchoid, the Cissoid, and the Conick Sections, and by some of these to solve these Problems. At length, having more throughly examin'd the Matter, and the Conick Sections being receiv'd into Geometry, they distinguish'd Problems into three Kinds: viz. (1.) Into Plane ones, which deriving their Original from Lines on a Plane, may be solv'd by a right Line and a Circle; (2.) Into Solid ones, which were solved by Lines deriving their Original from the Consideration of a Solid, that is, of a Cone; (3.) And Linear ones, to the Solution of which were requir'd Lines more compounded. And according to this Distinction, we are not to solve solid Problems by other Lines than the Conick Sections; especially if no other Lines but right ones, a Circle, and the Conick Sections, must be receiv'd into Geometry. But the Moderns advancing yet much farther, have receiv'd into Geometry all Lines that can be express'd by Æquations, and have distinguish'd, according to the Dimensions of the Æquations, those Lines into Kinds; and have made it a Law, that you are not to construct a Problem by a Line of a superior Kind, that may be constructed by one of an inferior one. In the Contemplation of Lines, and finding out their Properties, I like their Distinction of them into Kinds, according to the Dimensions thy Æquations by which they are defin'd. But it is not the Æquation, but the Description that makes the Curve to be a Geometrical one.<!--pp.227-228
Help us to complete the source, original and additional information
Isaac Newton 171
British physicist and mathematician and founder of modern c… 1643–1727Related quotes
"Boscovich's mathematics", an article by J. F. Scott, in the book Roger Joseph Boscovich (1961) edited by Lancelot Law Whyte.
"Transient pressure analysis in composite reservoirs" (1982) by Raymond W. K. Tang and William E. Brigham.
"Non-Newtonian Calculus" (1972) by Michael Grossman and Robert Katz.
But all that is not yet clear in my mind.
Quote in Mondrian's letter to artist Gorin, [who stated that the double line broke the necessary symmetry], 31 January, 1934; as quoted in Mondrian, - The Art of Destruction, Carel Blotkamp, Reaktion Books LTD. London 2001, p. 215
1930's
“i still have no way to survive but to keep writing one line, one more line, one more line…”
Apologia
The Flower of Old Japan and Other Poems (1907), Forest of Wild Thyme
The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)
“You want it in one line? Does it have to fit in 80 columns?”
[7349@jpl-devvax.JPL.NASA.GOV, 1990]
Usenet postings, 1990