“But the Moderns advancing yet much farther, have receiv'd into Geometry all Lines that can be express'd by Æquations, and have distinguish'd, according to the Dimensions of the Æquations, those Lines into Kinds; and have made it a Law, that you are not to construct a Problem by a Line of a superior Kind, that may be constructed by one of an inferior one.”

Arithmetica Universalis (1707)
Context: The Antients, as we learn from Pappus, in vain endeavour'd at the Trisection of an Angle, and the finding out of two mean Proportionals by a right line and a Circle. Afterwards they began to consider the Properties of several other Lines. as the Conchoid, the Cissoid, and the Conick Sections, and by some of these to solve these Problems. At length, having more throughly examin'd the Matter, and the Conick Sections being receiv'd into Geometry, they distinguish'd Problems into three Kinds: viz. (1.) Into Plane ones, which deriving their Original from Lines on a Plane, may be solv'd by a right Line and a Circle; (2.) Into Solid ones, which were solved by Lines deriving their Original from the Consideration of a Solid, that is, of a Cone; (3.) And Linear ones, to the Solution of which were requir'd Lines more compounded. And according to this Distinction, we are not to solve solid Problems by other Lines than the Conick Sections; especially if no other Lines but right ones, a Circle, and the Conick Sections, must be receiv'd into Geometry. But the Moderns advancing yet much farther, have receiv'd into Geometry all Lines that can be express'd by Æquations, and have distinguish'd, according to the Dimensions of the Æquations, those Lines into Kinds; and have made it a Law, that you are not to construct a Problem by a Line of a superior Kind, that may be constructed by one of an inferior one. In the Contemplation of Lines, and finding out their Properties, I like their Distinction of them into Kinds, according to the Dimensions thy Æquations by which they are defin'd. But it is not the Æquation, but the Description that makes the Curve to be a Geometrical one.<!--pp.227-228

Adopted from Wikiquote. Last update Oct. 1, 2023. History

Help us to complete the source, original and additional information

Do you have more details about the quote "But the Moderns advancing yet much farther, have receiv'd into Geometry all Lines that can be express'd by Æquations, a…" by Isaac Newton?
Isaac Newton photo
Isaac Newton 171
British physicist and mathematician and founder of modern c… 1643–1727

Related quotes

Isaac Newton photo

“The Circle is a Geometrical Line, not because it may be express'd by an Æquation, but because its Description is a Postulate. It is not the Simplicity of the Æquation, but the Easiness of the Description, which is to determine the Choice of our Lines for the Construction of Problems.”

Arithmetica Universalis (1707)
Context: The Circle is a Geometrical Line, not because it may be express'd by an Æquation, but because its Description is a Postulate. It is not the Simplicity of the Æquation, but the Easiness of the Description, which is to determine the Choice of our Lines for the Construction of Problems. For the Æquation that expresses a Parabola, is more simple than That that expresses a Circle, and yet the Circle, by reason of its more simple Construction, is admitted before it. The Circle and the Conick Sections, if you regard the Dimension of the Æquations, are of the fame Order, and yet the Circle is not number'd with them in the Construction of Problems, but by reason of its simple Description, is depressed to a lower Order, viz. that of a right Line; so that it is not improper to express that by a Circle that may be expressed by a right Line. But it is a Fault to construct that by the Conick Sections which may be constructed by a Circle. Either therefore you must take your Law and Rule from the Dimensions of Æquations as observ'd in a Circle, and so take away the Distinction between Plane and Solid Problems; or else you must grant, that that Law is not so strictly to be observ'd in Lines of superior Kinds, but that some, by reason of their more simple Description, may be preferr'd to others of the same Order, and may be number'd with Lines of inferior Orders in the Construction of Problems.<!--p.228

Isaac Newton photo
Roger Joseph Boscovich photo

“But if some mind very different from ours were to look upon some property of some curved line as we do on the evenness of a straight line, he would not recognize as such the evenness of a straight line; nor would he arrange the elements of his geometry according to that very different system, and would investigate quite other relationships as I have suggested in my notes.
We fashion our geometry on the properties of a straight line because that seems to us to be the simplest of all. But really all lines that are continuous and of a uniform nature are just as simple as one another. Another kind of mind which might form an equally clear mental perception of some property of any one of these curves, as we do of the congruence of a straight line, might believe these curves to be the simplest of all, and from that property of these curves build up the elements of a very different geometry, referring all other curves to that one, just as we compare them to a straight line. Indeed, these minds, if they noticed and formed an extremely clear perception of some property of, say, the parabola, would not seek, as our geometers do, to rectify the parabola, they would endeavor, if one may coin the expression, to parabolify the straight line.”

Roger Joseph Boscovich (1711–1787) Croat-Italian physicist

"Boscovich's mathematics", an article by J. F. Scott, in the book Roger Joseph Boscovich (1961) edited by Lancelot Law Whyte.
"Transient pressure analysis in composite reservoirs" (1982) by Raymond W. K. Tang and William E. Brigham.
"Non-Newtonian Calculus" (1972) by Michael Grossman and Robert Katz.

Piet Mondrian photo

“[the double line in his paintings] is still one line, as in the case of your grooves [= the wide sunken lines in the relief's, the artist Gorin made then]... In my last things the double line widens to form a plane, and yet it remains a line. Be that as it may, I believe that this question is one of those which lie beyond the realm of theory, and which are of such subtlety that they are rooted in the mystery of 'art.”

Piet Mondrian (1872–1944) Peintre Néerlandais

But all that is not yet clear in my mind.
Quote in Mondrian's letter to artist Gorin, [who stated that the double line broke the necessary symmetry], 31 January, 1934; as quoted in Mondrian, - The Art of Destruction, Carel Blotkamp, Reaktion Books LTD. London 2001, p. 215
1930's

Alfred Noyes photo
Hans Reichenbach photo

“It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. …the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection… analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". …If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels.”

Hans Reichenbach (1891–1953) American philosopher

The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)

Hans Reichenbach photo
Donald Barthelme photo
Larry Wall photo

“You want it in one line? Does it have to fit in 80 columns?”

Larry Wall (1954) American computer programmer and author, creator of Perl

[7349@jpl-devvax.JPL.NASA.GOV, 1990]
Usenet postings, 1990

Related topics