“All the light which is radiated… will, after it has traveled a distance r, lie on the surface of a sphere whose area S is given by the first of the formulae (3). And since the practical procedure… in determining d is equivalent to assuming that all this light lies on the surface of a Euclidean sphere of radius d, it follows…4 \pi d^2 = S = 4 \pi r^2 (1 - \frac{K r^2}{3} + …);whence, to our approximation 4)d = r (1- \frac{K r^2}{6} + …), or
r = d (1 + \frac{K d^2}{6} + …).</center”

Geometry as a Branch of Physics (1949)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "All the light which is radiated… will, after it has traveled a distance r, lie on the surface of a sphere whose area S …" by Howard P. Robertson?
Howard P. Robertson photo
Howard P. Robertson 28
American mathematician and physicist 1903–1961

Related quotes

Simon Stevin photo
David Eugene Smith photo
E. W. Hobson photo

“These seven stages we shall name as follows:
1. Mixture
2. Gestation
3. Expansion
4. Age of Conflict
5. Universal Empire
6. Decay
7. Invasion”

Carroll Quigley (1910–1977) American historian

Source: The Evolution of Civilizations (1961) (Second Edition 1979), Chapter 5, Historical Change in Civilizations, p. 146

Thomas Little Heath photo

“The discovery of Hippocrates amounted to the discovery of the fact that from the relation
(1)\frac{a}{x} = \frac{x}{y} = \frac{y}{b}it follows that(\frac{a}{x})^3 = [\frac{a}{x} \cdot \frac{x}{y} \cdot \frac{y}{b} =] \frac{a}{b}and if a = 2b, [then (\frac{a}{x})^3 = 2, and]a^3 = 2x^3.The equations (1) are equivalent [by reducing to common denominators or cross multiplication] to the three equations
(2)x^2 = ay, y^2 = bx, xy = ab[or equivalently…y = \frac{x^2}{a}, x = \frac{y^2}{b}, y = \frac{ab}{x} ]Doubling the Cube
the 2 solutions of Menaechmusand the solutions of Menaechmus described by Eutocius amount to the determination of a point as the intersection of the curves represented in a rectangular system of Cartesian coordinates by any two of the equations (2).
Let AO, BO be straight lines placed so as to form a right angle at O, and of length a, b respectively. Produce BO to x and AO to y.
The first solution now consists in drawing a parabola, with vertex O and axis Ox, such that its parameter is equal to BO or b, and a hyperbola with Ox, Oy as asymptotes such that the rectangle under the distances of any point on the curve from Ox, Oy respectively is equal to the rectangle under AO, BO i. e. to ab. If P be the point of intersection of the parabola and hyperbola, and PN, PM be drawn perpendicular to Ox, Oy, i. e. if PN, PM be denoted by y, x, the coordinates of the point P, we shall have

\begin{cases}y^2 = b. ON = b. PM = bx\\ and\\ xy = PM. PN = ab\end{cases}whence\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.
In the second solution of Menaechmus we are to draw the parabola described in the first solution and also the parabola whose vertex is O, axis Oy and parameter equal to a.”

Thomas Little Heath (1861–1940) British civil servant and academic

The point P where the two parabolas intersect is given by<center><math>\begin{cases}y^2 = bx\\x^2 = ay\end{cases}</math></center>whence, as before,<center><math>\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.</math></center>
Apollonius of Perga (1896)

Related topics