“It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. …the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection… analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". …If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels.”
The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)
Help us to complete the source, original and additional information
Hans Reichenbach 41
American philosopher 1891–1953Related quotes

Instead we shall speak of the normative function of the thinking process, which can guide the pictorial elements of thinking into any logically permissible structure.
The Philosophy of Space and Time (1928, tr. 1957)
Source: Mathematical Thought from Ancient to Modern Times (1972), p. 454
Geometry as a Branch of Physics (1949)
Source: Mathematical Thought from Ancient to Modern Times (1972), p. 177
Context: The attempt to avoid a direct affirmation about infinite parallel straight lines caused Euclid to phrase the parallel axiom in a rather complicated way. He realized that, so worded, this axiom lacked the self-sufficiency of the other nine axioms, and there is good reason to believe that he avoided using it until he had to. Many Greeks tried to find substitute axioms for the parallel axiom or to prove it on the basis of the other nine.... Simplicius cites others who worked on the problem and says further that people "in ancient times" objected to the use of the parallel postulate.
Geometry as a Branch of Physics (1949)

" Generality in Artificial Intelligence http://www-formal.stanford.edu/jmc/generality.html" (1971–1987), ACM Turing Award Lectures: The First Twenty Years, ACM Press, 1987, ISBN 0201077949
1980s