“Menæchmus, a pupil of Eudoxus, and a contemporary of Plato, found the two mean proportionals by means of conic sections, in two ways, (α) by the intersection of two parabolas, the equations of which in Cartesian co-ordinates would be x2=ay, y2=bx, and (β) by the intersection of a parabola and a rectangular hyperbola, the corresponding equations being x2=ay, and xy=ab respectively. It would appear that it was in the effort to solve this problem that Menæchmus discovered the conic sections, which are called, in an epigram by Eratosthenes, "the triads of Menæchmus."”

Achimedes (1920)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "Menæchmus, a pupil of Eudoxus, and a contemporary of Plato, found the two mean proportionals by means of conic sections…" by Thomas Little Heath?
Thomas Little Heath photo
Thomas Little Heath 46
British civil servant and academic 1861–1940

Related quotes

Thomas Little Heath photo
Thomas Little Heath photo

“The discovery of Hippocrates amounted to the discovery of the fact that from the relation
(1)\frac{a}{x} = \frac{x}{y} = \frac{y}{b}it follows that(\frac{a}{x})^3 = [\frac{a}{x} \cdot \frac{x}{y} \cdot \frac{y}{b} =] \frac{a}{b}and if a = 2b, [then (\frac{a}{x})^3 = 2, and]a^3 = 2x^3.The equations (1) are equivalent [by reducing to common denominators or cross multiplication] to the three equations
(2)x^2 = ay, y^2 = bx, xy = ab[or equivalently…y = \frac{x^2}{a}, x = \frac{y^2}{b}, y = \frac{ab}{x} ]Doubling the Cube
the 2 solutions of Menaechmusand the solutions of Menaechmus described by Eutocius amount to the determination of a point as the intersection of the curves represented in a rectangular system of Cartesian coordinates by any two of the equations (2).
Let AO, BO be straight lines placed so as to form a right angle at O, and of length a, b respectively. Produce BO to x and AO to y.
The first solution now consists in drawing a parabola, with vertex O and axis Ox, such that its parameter is equal to BO or b, and a hyperbola with Ox, Oy as asymptotes such that the rectangle under the distances of any point on the curve from Ox, Oy respectively is equal to the rectangle under AO, BO i. e. to ab. If P be the point of intersection of the parabola and hyperbola, and PN, PM be drawn perpendicular to Ox, Oy, i. e. if PN, PM be denoted by y, x, the coordinates of the point P, we shall have

\begin{cases}y^2 = b. ON = b. PM = bx\\ and\\ xy = PM. PN = ab\end{cases}whence\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.
In the second solution of Menaechmus we are to draw the parabola described in the first solution and also the parabola whose vertex is O, axis Oy and parameter equal to a.”

Thomas Little Heath (1861–1940) British civil servant and academic

The point P where the two parabolas intersect is given by<center><math>\begin{cases}y^2 = bx\\x^2 = ay\end{cases}</math></center>whence, as before,<center><math>\frac{a}{x} = \frac{x}{y} = \frac{y}{b}.</math></center>
Apollonius of Perga (1896)

Isaac Newton photo
Thomas Little Heath photo
Steve Keen photo

“Which comes first — price being set by the intersection of supply and demand, or individual firms equating marginal cost to price?”

Steve Keen (1953) Australian economist

Source: Debunking Economics - The Naked Emperor Of The Social Sciences (2001), Chapter 4, Size Does Matter, p. 101

Arthur Koestler photo

“We find in the history of ideas mutations which do not seem to correspond to any obvious need, and at first sight appear as mere playful whimsies — such as Apollonius' work on conic sections, or the non-Euclidean geometries, whose practical value became apparent only later.”

Arthur Koestler (1905–1983) Hungarian-British author and journalist

as quoted by Michael Grossman in the The First Nonlinear System of Differential and Integral Calculus (1979).
The Sleepwalkers: A History of Man's Changing Vision of the Universe (1959)

René Descartes photo
Isaac Newton photo

“The Ellipse is the most simple of the Conic Sections, most known, and nearest of Kin to a Circle, and easiest describ'd by the Hand in plano.”

Though many prefer the Parabola before it, for the Simplicity of the Æquation by which it is express'd. But by this Reason the Parabola ought to be preferr'd before the Circle it self, which it never is. Therefore the reasoning from the Simplicity of the Æquation will not hold. The modern Geometers are too fond of the Speculation of Æquations.
Arithmetica Universalis (1707)

Hans Reichenbach photo

Related topics