“Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry in mathematics. It has been argued that mathematics is not only a science of implications but that it has to establish preference for one particular axiomatic system. Whereas physics bases this choice on observation and experimentation, i. e., on applicability to reality, mathematics bases it on visualization, the analogue to perception in a theoretical science. Accordingly, mathematicians may work with the non-Euclidean geometries, but in contrast to Euclidean geometry, which is said to be "intuitively understood," these systems consist of nothing but "logical relations" or "artificial manifolds". They belong to the field of analytic geometry, the study of manifolds and equations between variables, but not to geometry in the real sense which has a visual significance.”

The Philosophy of Space and Time (1928, tr. 1957)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "Euclidean geometry can be easily visualized; this is the argument adduced for the unique position of Euclidean geometry…" by Hans Reichenbach?
Hans Reichenbach photo
Hans Reichenbach 41
American philosopher 1891–1953

Related quotes

Hans Reichenbach photo
David Hilbert photo
Hans Reichenbach photo
Hans Reichenbach photo

“The main objection to the theory of pure visualization is our thesis that the non-Euclidean axioms can be visualized just as rigorously if we adjust the concept of congruence. This thesis is based on the discovery that the normative function of visualization is not of visual but of logical origin and that the intuitive acceptance of certain axioms is based on conditions from which they follow logically, and which have previously been smuggled into the images. The axiom that the straight line is the shortest distance is highly intuitive only because we have adapted the concept of straightness to the system of Eucidean concepts. It is therefore necessary merely to change these conditions to gain a correspondingly intuitive and clear insight into different sets of axioms; this recognition strikes at the root of the intuitive priority of Euclidean geometry. Our solution of the problem is a denial of pure visualization, inasmuch as it denies to visualization a special extralogical compulsion and points out the purely logical and nonintuitive origin of the normative function. Since it asserts, however, the possibility of a visual representation of all geometries, it could be understood as an extension of pure visualization to all geometries. In that case the predicate "pure" is but an empty addition, since it denotes only the difference between experienced and imagined pictures, and we shall therefore discard the term "pure visualization."”

Hans Reichenbach (1891–1953) American philosopher

Instead we shall speak of the normative function of the thinking process, which can guide the pictorial elements of thinking into any logically permissible structure.
The Philosophy of Space and Time (1928, tr. 1957)

Charles A. Beard photo

“Science does not speak of the world in the language of words alone, and in many cases it simply cannot do so. The natural language of science is a synergistic integration of words, diagrams, pictures, graphs, maps, equations, tables, charts, and other forms of visual and mathematical expression… [Science thus consists of] the languages of visual representation, the languages of mathematical symbolism, and the languages of experimental operations.”

Jay Lemke (1946) American academic

Jay Lemke (2003), "Teaching all the languages of science: Words , symbols, images and actions," p. 3; as cited in: Scott, Phil, Hilary Asoko, and John Leach. "Student conceptions and conceptual learning in science." Handbook of research on science education (2007): 31-56.

Albrecht Dürer photo

“The new art must be based upon science — in particular, upon mathematics, as the most exact, logical, and graphically constructive of the sciences.”

Albrecht Dürer (1471–1528) German painter, printmaker, mathematician, and theorist

As quoted in Dictionary of Scientific Biography (1970 - 1990) edited by M Steck.

Related topics