“From Pythagoras to Boethius, when pure mathematics consisted of arithmetic and geometry while applied mathematics consisted of music and astronomy, mathematics could be characterized as the deductive study of 'such abstractions as quantities and their consequences, namely figures and so forth' (Acquinas ca. 1260). But since the emergence of abstract algebra it has become increasingly difficult to formulate a definition to cover the whole of the rich, complex and expanding domain of mathematics.”
100 Years of Mathematics: a Personal Viewpoint (1981)
Help us to complete the source, original and additional information
George Frederick James Temple 21
British mathematician 1901–1992Related quotes

Forward, as quoted by Mario Livio, Is God a Mathematician? (2009)
Ausdehnungslehre (1844)
The Fourth Dimension simply Explained. (New York, 1910), p. 58. Reported in Moritz (1914); Also cited in: Howard Eves (2012), Foundations and Fundamental Concepts of Mathematics, p. 167

Kurt Gödel (1958, CW II, p. 241) as cited in: Feferman, Solomon. " Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert's program* http://math.stanford.edu/~feferman/papers/bernays.pdf." dialectica 62.2 (2008): 179-203.

[Shewhart, Walter A., Deming, William E., Statistical Method from the Viewpoint of Quality Control, The Graduate School, The Department of Agriculture, 1939, 18]
Economic Control of Quality of Manufactured Product,1931

"Über die verschiedenen Ansichten in Bezug auf die actualunendlichen Zahlen" ["Over the different views with regard to the actual infinite numbers"] - Bihand Till Koniglen Svenska Vetenskaps Akademiens Handigar (1886)

p, 125
"On the Harmony of Theory and Practice in Mechanics" (Jan. 3, 1856)

Source: Science and Hypothesis (1901), Ch. I: On the Nature of Mathematical Reasoning (1905) Tr. https://books.google.com/books?id=5nQSAAAAYAAJ George Bruce Halstead
Context: The very possibility of the science of mathematics seems an insoluble contradiction. If this science is deductive only in appearance, whence does it derive that perfect rigor no one dreams of doubting? If, on the contrary, all the propositions it enunciates can be deduced one from another by the rules of formal logic, why is not mathematics reduced to an immense tautology? The syllogism can teach us nothing essentially new, and, if everything is to spring from the principle of identity, everything should be capable of being reduced to it. Shall we then admit that the enunciations of all those theorems which fill so many volumes are nothing but devious ways of saying A is A!... Does the mathematical method proceed from particular to the general, and, if so, how can it be called deductive?... If we refuse to admit these consequences, it must be conceded that mathematical reasoning has of itself a sort of creative virtue and consequently differs from a syllogism.<!--pp.5-6