
" Generality in Artificial Intelligence http://www-formal.stanford.edu/jmc/generality.html" (1971–1987), ACM Turing Award Lectures: The First Twenty Years, ACM Press, 1987, ISBN 0201077949
1980s
Aphorism 19
Novum Organum (1620), Book I
Context: There are and can be only two ways of searching into and discovering truth. The one flies from the senses and particulars to the most general axioms, and from these principles, the truth of which it takes for settled and immovable, proceeds to judgment and to the discovery of middle axioms. And this way is now in fashion. The other derives axioms from the senses and particulars, rising by a gradual and unbroken ascent, so that it arrives at the most general axioms last of all. This is the true way, but as yet untried.
" Generality in Artificial Intelligence http://www-formal.stanford.edu/jmc/generality.html" (1971–1987), ACM Turing Award Lectures: The First Twenty Years, ACM Press, 1987, ISBN 0201077949
1980s
Part 3: "The Sense of Human Dignity", §3 (p. 58)
Science and Human Values (1956, 1965)
Context: There is a social injunction implied in the positivist and analyst methods. This social axiom is that
We OUGHT to act in such a way that what IS true can be verified to be so.
Source: Mathematical Thought from Ancient to Modern Times (1972), p. 177
Context: The attempt to avoid a direct affirmation about infinite parallel straight lines caused Euclid to phrase the parallel axiom in a rather complicated way. He realized that, so worded, this axiom lacked the self-sufficiency of the other nine axioms, and there is good reason to believe that he avoided using it until he had to. Many Greeks tried to find substitute axioms for the parallel axiom or to prove it on the basis of the other nine.... Simplicius cites others who worked on the problem and says further that people "in ancient times" objected to the use of the parallel postulate.
William Stanley Jevons Letter to his brother (1 June 1860), published in Letters and Journal of W. Stanley Jevons (1886), edited by Harriet A. Jevons, his wife, p. 151 - 152.
The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)
Source: "Outlines of the Science of Energetics," (1855), p. 121; Second paragraph
"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Context: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.
Excerpt from Beyond the Pale by Nicholas Mosley.