“The axioms which Tertium Organum embraces cannot be formulated in our language. If we attempt to formulate them in spite of this, they will produce the impression of absurdities. Taking the axioms of Aristotle as a model, we may express the principal axiom of the new logic in our poor earthly language in the following manner:
A is both A and Not-A.
or
Everything is both A and Not-A.
or,
Everything is All.
But these axioms are in effect absolutely impossible. They are not the axioms of higher logic, they are merely attempts to express the axioms of this logic in concepts. In reality the ideas of higher logic are inexpressible in concepts. When we encounter such an inexpressibility it means that we have touched the world of causes.”

Source: Tertium Organum (1912; 1922), Ch. XXI

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "The axioms which Tertium Organum embraces cannot be formulated in our language. If we attempt to formulate them in spit…" by P. D. Ouspensky?
P. D. Ouspensky photo
P. D. Ouspensky 41
Russian esotericist 1878–1947

Related quotes

Aldous Huxley photo

“It is a political axiom that power follows property.”

Source: Brave New World Revisited (1958), Chapter 12 (p. 113)

“The attempt to avoid a direct affirmation about infinite parallel straight lines caused Euclid to phrase the parallel axiom in a rather complicated way. He realized that, so worded, this axiom lacked the self-sufficiency of the other nine axioms, and there is good reason to believe that he avoided using it until he had to. Many Greeks tried to find substitute axioms for the parallel axiom or to prove it on the basis of the other nine. …Simplicius”

Morris Kline (1908–1992) American mathematician

Source: Mathematical Thought from Ancient to Modern Times (1972), p. 177
Context: The attempt to avoid a direct affirmation about infinite parallel straight lines caused Euclid to phrase the parallel axiom in a rather complicated way. He realized that, so worded, this axiom lacked the self-sufficiency of the other nine axioms, and there is good reason to believe that he avoided using it until he had to. Many Greeks tried to find substitute axioms for the parallel axiom or to prove it on the basis of the other nine.... Simplicius cites others who worked on the problem and says further that people "in ancient times" objected to the use of the parallel postulate.

John Nash photo

“One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.”

John Nash (1928–2015) American mathematician and Nobel Prize laureate

"Non-cooperative Games" in Annals of Mathematics, Vol. 54, No. 2 (September 1951)<!-- ; as cited in Can and should the Nash program be looked at as a part of mechanism theory? (2003) by Walter Trockel -->
1950s
Context: We give two independent derivations of our solution of the two-person cooperative game. In the first, the cooperative game is reduced to a non-cooperative game. To do this, one makes the players’ steps of negotiation in the cooperative game become moves in the noncooperative model. Of course, one cannot represent all possible bargaining devices as moves in the non-cooperative game. The negotiation process must be formalized and restricted, but in such a way that each participant is still able to utilize all the essential strengths of his position. The second approach is by the axiomatic method. One states as axioms several properties that it would seem natural for the solution to have and then one discovers that the axioms actually determine the solution uniquely. The two approaches to the problem, via the negotiation model or via the axioms, are complementary; each helps to justify and clarify the other.

Karl Pearson photo

“[M]y axiom runs as follows: "The whole is not identical with a part." This axiom leads us at once to a problem. What relation has the part to the whole?”

Karl Pearson (1857–1936) English mathematician and biometrician

The Ethic of Freethought (Mar 6, 1883)

Étienne Bonnot de Condillac photo

“We shall not … begin this logic by definitions, axioms, or principles; we shall begin by observing the lessons which nature gives us.”

Étienne Bonnot de Condillac (1714–1780) French academic

The Logic of Condillac (trans. Joseph Neef, 1809), "Of the Method of Thinking", p. 3.

Hans Reichenbach photo

“It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. …the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection… analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". …If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels.”

Hans Reichenbach (1891–1953) American philosopher

The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)

Hans Reichenbach photo
George Boole photo
George Gilder photo

“Gödel demonstrated that every logical scheme, including mathematics, is dependent upon axioms that it cannot prove and that cannot be reduced to the scheme itself.”

George Gilder (1939) technology writer

Knowledge and Power : The Information Theory of Capitalism and How it is Revolutionizing our World (2013), Ch. 10: Romer's Recipes and Their Limits <!-- Regnery Publishing -->
Context: Academic scientists of any sort expect to be struck by lightning if they celebrate real creation de novo in the world. One does not expect modern scientists to address creation by God. They have a right to their professional figments such as infinite multiple parallel universes. But it is a strange testimony to our academic life that they also feel it necessary of entrepreneurship to chemistry and cuisine, Romer finally succumbs to the materialist supersition: the idea that human beings and their ideas are ultimately material. Out of the scientistic fog there emerged in the middle of the last century the countervailling ideas if information theory and computer science. The progenitor of information theory, and perhaps the pivotal figure in the recent history of human thought, was Kurt Gödel, the eccentric Austrian genius and intimate of Einstein who drove determinism from its strongest and most indispensable redoubt; the coherence, consistency, and self-sufficiency of mathematics.
Gödel demonstrated that every logical scheme, including mathematics, is dependent upon axioms that it cannot prove and that cannot be reduced to the scheme itself. In an elegant mathematical proof, introduced to the world by the great mathematician and computer scientist John von Neumann in September 1930, Gödel demonstrated that mathematics was intrinsically incomplete. Gödel was reportedly concerned that he might have inadvertently proved the existence of God, a faux pas in his Viennese and Princeton circle. It was one of the famously paranoid Gödel's more reasonable fears. As the economist Steven Landsberg, an academic atheist, put it, "Mathematics is the only faith-based science that can prove it."

Hans Reichenbach photo

“The main objection to the theory of pure visualization is our thesis that the non-Euclidean axioms can be visualized just as rigorously if we adjust the concept of congruence. This thesis is based on the discovery that the normative function of visualization is not of visual but of logical origin and that the intuitive acceptance of certain axioms is based on conditions from which they follow logically, and which have previously been smuggled into the images. The axiom that the straight line is the shortest distance is highly intuitive only because we have adapted the concept of straightness to the system of Eucidean concepts. It is therefore necessary merely to change these conditions to gain a correspondingly intuitive and clear insight into different sets of axioms; this recognition strikes at the root of the intuitive priority of Euclidean geometry. Our solution of the problem is a denial of pure visualization, inasmuch as it denies to visualization a special extralogical compulsion and points out the purely logical and nonintuitive origin of the normative function. Since it asserts, however, the possibility of a visual representation of all geometries, it could be understood as an extension of pure visualization to all geometries. In that case the predicate "pure" is but an empty addition, since it denotes only the difference between experienced and imagined pictures, and we shall therefore discard the term "pure visualization."”

Hans Reichenbach (1891–1953) American philosopher

Instead we shall speak of the normative function of the thinking process, which can guide the pictorial elements of thinking into any logically permissible structure.
The Philosophy of Space and Time (1928, tr. 1957)

Related topics