“Take a unit, halve it, halve the result, and so on continually. This gives—1 1⁄2 1⁄4 1⁄8 1⁄16 1⁄32 1⁄64 1⁄128 &c.;Add these together, beginning from the first, namely, add the first two, the first three, the first four, &c;… We see then a continual approach to 2, which is not reached, nor ever will be, for the deficit from 2 is always equal to the last term added.
…We say that—1, 1 + 1⁄2, 1 + 1⁄2 + 1⁄4, 1 + 1⁄2 + 1⁄4 + 1⁄8, &c.; &c.;is a series of quantities which continually approximate to the limit 2. Now the truth is, these several quantities are fixed, and do not approximate to 2. …it is we ourselves who approximate to 2, by passing from one to another. Similarly when we say, "let x be a quantity which continually approximates to the limit 2," we mean, let us assign different values to x, each nearer to 2 than the preceding, and following such a law that we shall, by continuing our steps sufficiently far, actually find a value for x which shall be as near to 2 as we please.”

The Differential and Integral Calculus (1836)

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "Take a unit, halve it, halve the result, and so on continually. This gives—1 1⁄2 1⁄4 1⁄8 1⁄16 1⁄32 1⁄64 1⁄128 &c.;Add t…" by Augustus De Morgan?
Augustus De Morgan photo
Augustus De Morgan 41
British mathematician, philosopher and university teacher (… 1806–1871

Related quotes

John Napier photo
Augustus De Morgan photo
John Wallis photo

“Suppose we a certain Number of things exposed, different each from other, as a, b, c, d, e, &c.; The question is, how many ways the order of these may be varied? as, for instance, how many changes may be Rung upon a certain Number of Bells; or, how many ways (by way of Anagram) a certain Number of (different) Letters may be differently ordered?
Alt.1,21) If the thing exposed be but One, as a, it is certain, that the order can be but one. That is 1.
2) If Two be exposed, as a, b, it is also manifest, that they may be taken in a double order, as ab, ba, and no more. That is 1 x 2 = 2. Alt.3
3) If Three be exposed; as a, b, c: Then, beginning with a, the other two b, c, may (by art. 2,) be disposed according to Two different orders, as bc, cb; whence arise Two Changes (or varieties of order) beginning with a as abc, acb: And, in like manner it may be shewed, that there be as many beginning with b; because the other two, a, c, may be so varied, as bac, bca. And again as many beginning with c as cab, cba. And therefore, in all, Three times Two. That is 1 x 2, x 3 = 6.
Alt.34) If Four be exposed as a, b, c, d; Then, beginning with a, the other Three may (by art. preceeding) be disposed six several ways. And (by the same reason) as many beginning with b, and as many beginning with c, and as many beginning with d. And therefore, in all, Four times six, or 24. That is, the Number answering to the case next foregoing, so many times taken as is the Number of things here exposed. That is 1 x 2 x 3, x 4 = 6 x 4 = 24.
5) And in like manner it may be shewed, that this Number 24 Multiplied by 5, that is 120 = 24 x 5 = 1 x 2 x 3 x 4 x 5, is the number of alternations (or changes of order) of Five things exposed. (Or, the Number of Changes on Five Bells.) For each of these five being put in the first place, the other four will (by art. preceeding) admit of 24 varieties, that is, in all, five times 24. And in like manner, this Number 120 Multiplied by 6, shews the Number of Alternations of 6 things exposed; and so onward, by continual Multiplication by the conse quent Numbers 7, 8, 9, &c.;
6) That is, how many so ever of Numbers, in their natural Consecution, beginning from 1, being continually Multiplied, give us the Number of Alternations (or Change of order) of which so many things are capable as is the last of the Numbers so Multiplied. As for instance, the Number of Changes in Ringing Five Bells, is 1 x 2 x 3 x 4 x 5 = 120. In Six Bells, 1 x 2 x 3 x 4 x 5 x 6 = 120 x 6 = 720. In Seven Bells, 720 x 7 = 5040. In Eight Bells, 5040 x 8 = 40320, And so onward, as far as we please.”

John Wallis (1616–1703) English mathematician

Source: A Discourse of Combinations, Alterations, and Aliquot Parts (1685), Ch.II Of Alternations, or the different Change of Order, in any Number of Things proposed.

David Eugene Smith photo
Gerald James Whitrow photo
Larry Wall photo

“last|perl -pe '$_ x=/(..:.)…(.*)/&&"'$1'"ge$1&&"'$1'"lt$2'That's gonna be tough for Randal to beat…”

Larry Wall (1954) American computer programmer and author, creator of Perl

[1991Apr29.072206.5621@jpl-devvax.jpl.nasa.gov, 1991]
Usenet postings, 1991

Niels Henrik Abel photo

“Lety5 - ay4 + by3 - cy2 + dy - e = 0be the general equation of the fifth degree and suppose that it can be solved algebraically,—i. e., that y can be expressed as a function of the quantities a, b, c, d, and e, composed of radicals. In this case, it is clear that y can be written in the formy = p + p1R1/m + p2R2/m +…+ pm-1R(m-1)/m,m being a prime number, and R, p, p1, p2, etc. being functions of the same form as y. We can continue in this way until we reach rational functions of a, b, c, d, and e. [Note: main body of proof is excluded]
…we can find y expressed as a rational function of Z, a, b, c, d, and e. Now such a function can always be reduced to the formy = P + R1/5 + P2R2/5 + P3R3/5 + P4R4/5, where P, R, P2, P3, and P4 are functions or the form p + p1S1/2, where p, p1 and S are rational functions of a, b, c, d, and e. From this value of y we obtainR1/5 = 1/5(y1 + α4y2 + α3y3 + α2y4 + α y5) = (p + p1S1/2)1/5,whereα4 + α3 + α2 + α + 1 = 0.Now the first member has 120 different values, while the second member has only 10; hence y can not have the form that we have found: but we have proved that y must necessarily have this form, if the proposed equation can be solved: hence we conclude that
It is impossible to solve the general equation of the fifth degree in terms of radicals.
It follows immediately from this theorem, that it is also impossible to solve the general equations of degrees higher than the fifth, in terms of radicals.”

Niels Henrik Abel (1802–1829) Norwegian mathematician

A Memoir on Algebraic Equations, Proving the Impossibility of a Solution of the General Equation of the Fifth Degree (1824) Tr. W. H. Langdon, as quote in A Source Book in Mathematics (1929) ed. David Eugene Smith

Related topics