“If we have two spherical bodies of equal mass at a given distance from each other and insert a third spherical body of the same mass half way between the two we do not double the mass attraction between any two of the three. We increase the attraction by 2 to the second power which is 4.”

Source: 1960s, Presentation to U.S. Congressional Sub-Committee on World Game (1969), p. 14
Context: I will give you one very simple example of synergy. All our metallic alloys are synergetic. We will examine chrome-nickel steel. The outstanding characteristic of metallic strength is its ability to cohere in one piece. We test the metals tensile strength per square inch of cross section of the tested sample. The very high number of pounds-per-square-inch tensile strength of chrome-nickel steel has changed our whole economy because it retained its structural integrity at so high a temperature as to make possible the jet engine which has halved the time it takes to fly around the world. The prime constituents are chromium, nickel, and iron. We will take the highest ultimate tensile strength of those three. The iron’s ultimate tensile strength is about 60,000 pounds per square inch. Nickel’s ultimate is about 80,000 p. s. i. Chromium is about 70,000 p. s. i. Ultimate tensile strengths of the other minor constituents: carbon, manganese, et cetera, added together total about 40,000 psi. If we use the same tensile logic as that applied to a chain and say that a chain is no stronger than its weakest link, then we would assume that chrome-nickel steel would part at between 40,000 and 60,000 p. s. i. But we find experimentally that is not the case. We find by test that chrome-nickel steel is 350,000 pounds a square inch which is 50 percent stronger than the sum of the strength of all its alloys. To prove so we add 60,000, 70,000 and 80,000 which comes to 210,000. To this we add the 40,000 of minor alloying constituents which brings the sum of the strengths of all its alloying to only 250,000 pounds a square inch. The explanation for this is Newton’s gravitational law which noted the experimentally proven fact that the relative mass attraction of one body for another is proportioned to the second power of the relative proximity of the two bodies as expressed in the relative diameters of the two bodies. If we have two spherical bodies of equal mass at a given distance from each other and insert a third spherical body of the same mass half way between the two we do not double the mass attraction between any two of the three. We increase the attraction by 2 to the second power which is 4. Halving the distance fourfolds the inter-mass attraction. When we bring a galaxy of iron atoms together with the chromium atoms and a galaxy of nickel atoms they all fit neatly between one another and bring about the multifolding of their intercoherency. But there is nothing in one body by itself that says that it will have mass attraction. This can only be discovered by experimenting with two and more bodies. And even then there is no explanation of why there must be mass attraction and why it should increase as the second power of the relative increase of proximity. That is synergy.

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "If we have two spherical bodies of equal mass at a given distance from each other and insert a third spherical body of …" by Buckminster Fuller?
Buckminster Fuller photo
Buckminster Fuller 171
American architect, systems theorist, author, designer, inv… 1895–1983

Related quotes

Willem de Sitter photo
Steven Weinberg photo
James Jeans photo
Johannes Kepler photo
Gerald James Whitrow photo
Willem de Sitter photo

“Both the law of inertia and the law of gravitation contain a numerical factor or a constant belonging to matter, which is called mass. We have thus two definitions of mass; one by the law of inertia: mass is the ratio between force and acceleration. We may call the mass thus defined the inertial or passive mass, as it is a measure of the resistance offered by matter to a force acting on it. The second is defined by the law of gravitation, and might be called the gravitational or active mass, being a measure of the force exerted by one material body on another. The fact that these two constants or coefficients are the same is, in Newton's system, to be considered as a most remarkable accidental coincidence and was decidedly felt as such by Newton himself. He made experiments to determine the equality of the two masses by swinging a pendulum, of which the bob was hollow and could be filled up with different materials. The force acting on the pendulum is proportional to its active mass, its inertia is proportional to its passive mass, so that the period will depend on the ratio of the passive and the active mass. Consequently the fact that the period of all these different pendulums was the same, proves that this ratio is a constant, and can be made equal to unity by a suitable choice of units, i. e., the inertial and the gravitational mass are the same. These experiments have been repeated in the nineteenth century by Bessel, and in our own times by Eötvös and Zeeman, and the identity of the inertial and the gravitational mass is one of the best ascertained empirical facts in physics-perhaps the best. It follows that the so-called fictitious forces introduced by a motion of the body of reference, such as a rotation, are indistinguishable from real forces…. In Einstein's general theory of relativity there is also no formal theoretical difference, as there was in Newton's system…. the equality of inertial and gravitational mass is no longer an accidental coincidence, but a necessity.”

Willem de Sitter (1872–1934) Dutch cosmologist

p, 125
"The Astronomical Aspect of the Theory of Relativity" (1933)

Pierre Louis Maupertuis photo

“You live between two Masses. You exist in the present moment.”

Catherine Doherty (1896–1985) Religious order founder; Servant of God

Madonna House Staff Letter #140

Gerald James Whitrow photo
Ted Cruz photo

“America is more than just a land mass between two oceans, America is an ideal. A simple, yet powerful ideal. Freedom matters.”

Ted Cruz (1970) American politician

2010s, Speech at the Republican National Convention (July 20, 2016)

Related topics