“I am persuaded that it [The Method of Mechanical Theorems] will be of no little service to mathematics; for I apprehend that some, either of my contemporaries or of my successors, will, by means of the method when once established, be able to discover other theorems in addition, which have not yet occurred to me.”

The Method of Mechanical Theorems

Adopted from Wikiquote. Last update June 3, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "I am persuaded that it [The Method of Mechanical Theorems] will be of no little service to mathematics; for I apprehend…" by Archimedes?
Archimedes photo
Archimedes 20
Greek mathematician, physicist, engineer, inventor, and ast… -287–-212 BC

Related quotes

Archimedes photo
Ronald Fisher photo

“The analysis of variance is not a mathematical theorem, but rather a convenient method of arranging the arithmetic.”

Ronald Fisher (1890–1962) English statistician, evolutionary biologist, geneticist, and eugenicist

Discussion to ‘Statistics in agricultural research’ by J.Wishart, Journal of the Royal Statistical Society, Supplement, 1, 26-61, 1934.
1930s

Archimedes photo
Pierre de Fermat photo

“I propose this theorem to be proved or problem to be solved. If they succeed in discovering the proof or solution, they will acknowledge that questions of this kind are not inferior to the more celebrated ones from geometry either for depth or difficulty or method of proof”

Pierre de Fermat (1601–1665) French mathematician and lawyer

Letter to Frénicle (1657) Oeuvres de Fermat Vol.II as quoted by Edward Everett Whitford, The Pell Equation http://books.google.com/books?id=L6QKAAAAYAAJ (1912)
Context: There is scarcely any one who states purely arithmetical questions, scarcely any who understands them. Is this not because arithmetic has been treated up to this time geometrically rather than arithmetically? This certainly is indicated by many works ancient and modern. Diophantus himself also indicates this. But he has freed himself from geometry a little more than others have, in that he limits his analysis to rational numbers only; nevertheless the Zetcica of Vieta, in which the methods of Diophantus are extended to continuous magnitude and therefore to geometry, witness the insufficient separation of arithmetic from geometry. Now arithmetic has a special domain of its own, the theory of numbers. This was touched upon but only to a slight degree by Euclid in his Elements, and by those who followed him it has not been sufficiently extended, unless perchance it lies hid in those books of Diophantus which the ravages of time have destroyed. Arithmeticians have now to develop or restore it. To these, that I may lead the way, I propose this theorem to be proved or problem to be solved. If they succeed in discovering the proof or solution, they will acknowledge that questions of this kind are not inferior to the more celebrated ones from geometry either for depth or difficulty or method of proof: Given any number which is not a square, there also exists an infinite number of squares such that when multiplied into the given number and unity is added to the product, the result is a square.

Duncan Gregory photo

“In this chapter I shall collect those Theorems in the Differential Calculus which, depending only on the laws of combination of the symbols of differentiation, and not on the functions which are operated on by these symbols, may be proved by the method of the separation of the symbols : but as the principles of this method have not as yet found a place in the elementary works on the Calculus, I shall first state? briefly the theory on which it is founded.”

Duncan Gregory (1813–1844) British mathematician

Source: Examples of the processes of the differential and integral calculus, (1841), p. 237; Lead paragraph of Ch. XV, On General Theorems in the Differential Calculus,; Cited in: James Gasser (2000) A Boole Anthology: Recent and Classical Studies in the Logic of George Boole,, p. 52

Gottlob Frege photo
Thomas Little Heath photo
Thomas Little Heath photo

Related topics