“The mysterious musicality, the organic intermarriage of its forms convex and concave, the high singing phrase of a straight line bordering a plane and its sudden dropping into a scarcely traceable curve, and feel deeply, sharply, the profound peace, the philosophy awakened by the even distribution of light and shade, wandering from one curved plane into a deep clarity of light, enriching a carefully carved stone plane. One will understand at once that those awakened sensation have nothing to do with anatomical considerations, exactitudes observed or not.”

n.p.
1960 - 1968, Plastic Language, Ossip Zadkine

Adopted from Wikiquote. Last update Sept. 14, 2021. History

Help us to complete the source, original and additional information

Do you have more details about the quote "The mysterious musicality, the organic intermarriage of its forms convex and concave, the high singing phrase of a stra…" by Ossip Zadkine?
Ossip Zadkine photo
Ossip Zadkine 31
French sculptor 1890–1967

Related quotes

Huangbo Xiyun photo

“A perception, sudden as blinking, that subject and object are one, will lead to a deeply mysterious understanding; and by this understanding you will awaken to the truth.”

Huangbo Xiyun Chinese Zen Buddhist

The Wan Ling Record of Xiu Pei, quoted in Why Lazarus Laughed: The Essential Doctrine, Zen — Advaita — Tantra (2003) by Wei Wu Wei

Jane Roberts photo
Hans Reichenbach photo

“It is remarkable that this generalization of plane geometry to surface geometry is identical with that generalization of geometry which originated from the analysis of the axiom of parallels. …the construction of non-Euclidean geometries could have been equally well based upon the elimination of other axioms. It was perhaps due to an intuitive feeling for theoretical fruitfulness that the criticism always centered around the axiom of parallels. For in this way the axiomatic basis was created for that extension of geometry in which the metric appears as an independent variable. Once the significance of the metric as the characteristic feature of the plane has been recognized from the viewpoint of Gauss' plane theory, it is easy to point out, conversely, its connection with the axiom of parallels. The property of the straight line as being the shortest connection between two points can be transferred to curved surfaces, and leads to the concept of straightest line; on the surface of the sphere the great circles play the role of the shortest line of connection… analogous to that of the straight line on the plane. Yet while the great circles as "straight lines" share the most important property with those of the plane, they are distinct from the latter with respect to the axiom of the parallels: all great circles of the sphere intersect and therefore there are no parallels among these "straight lines". …If this idea is carried through, and all axioms are formulated on the understanding that by "straight lines" are meant the great circles of the sphere and by "plane" is meant the surface of the sphere, it turns out that this system of elements satisfies the system of axioms within two dimensions which is nearly identical in all of it statements with the axiomatic system of Euclidean geometry; the only exception is the formulation of the axiom of the parallels.”

Hans Reichenbach (1891–1953) American philosopher

The geometry of the spherical surface can be viewed as the realization of a two-dimensional non-Euclidean geometry: the denial of the axiom of the parallels singles out that generalization of geometry which occurs in the transition from the plane to the curve surface.
The Philosophy of Space and Time (1928, tr. 1957)

Piet Mondrian photo

“.. the elements of form have a particular aspect; every fragment, every plane, every line has its proper character.”

Piet Mondrian (1872–1944) Peintre Néerlandais

Source: 1940's, A New Realism', 1943-1945, p. 18

Roger Joseph Boscovich photo

“But if some mind very different from ours were to look upon some property of some curved line as we do on the evenness of a straight line, he would not recognize as such the evenness of a straight line; nor would he arrange the elements of his geometry according to that very different system, and would investigate quite other relationships as I have suggested in my notes.
We fashion our geometry on the properties of a straight line because that seems to us to be the simplest of all. But really all lines that are continuous and of a uniform nature are just as simple as one another. Another kind of mind which might form an equally clear mental perception of some property of any one of these curves, as we do of the congruence of a straight line, might believe these curves to be the simplest of all, and from that property of these curves build up the elements of a very different geometry, referring all other curves to that one, just as we compare them to a straight line. Indeed, these minds, if they noticed and formed an extremely clear perception of some property of, say, the parabola, would not seek, as our geometers do, to rectify the parabola, they would endeavor, if one may coin the expression, to parabolify the straight line.”

Roger Joseph Boscovich (1711–1787) Croat-Italian physicist

"Boscovich's mathematics", an article by J. F. Scott, in the book Roger Joseph Boscovich (1961) edited by Lancelot Law Whyte.
"Transient pressure analysis in composite reservoirs" (1982) by Raymond W. K. Tang and William E. Brigham.
"Non-Newtonian Calculus" (1972) by Michael Grossman and Robert Katz.

Samuel Beckett photo
James Bradley photo

“Hitherto we have considered the apparent motion of the star about its true place, as made only in a plane parallel to the ecliptic, in which case it appears to describe a circle in that plane; but since, when we judge of the place and motion of a star, we conceive it to be in the surface of a sphere, whose centre is our eye, 'twill be necessary to reduce the motion in that plane to what it would really appear on the surface of such a sphere, or (which will be equivalent) to what it would appear on a plane touching such a sphere in the star's true place. Now in the present case, where we conceive the eye at an indefinite distance, this will be done by letting fall perpendiculars from each point of the circle on such a plane, which from the nature of the orthographic projection will form an ellipsis, whose greater axis will be equal to the diameter of that circle, and the lesser axis to the greater as the sine of the star's latitude to the radius, for this latter plane being perpendicular to a line drawn from the centre of the sphere through the star's true place, which line is inclined to the ecliptic in an angle equal to the star's latitude; the touching plane will be inclined to the plane of the ecliptic in an angle equal to the complement of the latitude. But it is a known proposition in the orthographic projection of the sphere, that any circle inclined to the plane of the projection, to which lines drawn from the eye, supposed at an infinite distance, are at right angles, is projected into an ellipsis, having its longer axis equal to its diameter, and its shorter to twice the cosine of the inclination to the plane of the projection, half the longer axis or diameter being the radius.
Such an ellipse will be formed in our present case…”

James Bradley (1693–1762) English astronomer; Astronomer Royal

Miscellaneous Works and Correspondence (1832), Demonstration of the Rules relating to the Apparent Motion of the Fixed Stars upon account of the Motion of Light.

Related topics