
“When no point of a line is at a finite distance, the line itself is at an infinite distance.”
Brouillion project (1639) as quoted by Harold Scott MacDonald Coxeter, Projective Geometry (1987)
Brouillion project (1639) as quoted by Harold Scott MacDonald Coxeter, Projective Geometry (1987)
“When no point of a line is at a finite distance, the line itself is at an infinite distance.”
Brouillion project (1639) as quoted by Harold Scott MacDonald Coxeter, Projective Geometry (1987)
Source: Mathematical Thought from Ancient to Modern Times (1972), p. 454
“A straight line is not the shortest distance between two points.”
Source: A Wrinkle in Time: With Related Readings
The Kasîdah of Hâjî Abdû El-Yezdî (1870)
Context: And hold Humanity one man, whose universal agony
Still strains and strives to gain the goal, where agonies shall cease to be.
Believe in all things; none believe; judge not nor warp by "Facts" the thought;
See clear, hear clear, tho' life may seem Mâyâ and Mirage, Dream and Naught.
Abjure the Why and seek the How: the God and gods enthroned on high,
Are silent all, are silent still; nor hear thy voice, nor deign reply.
The Now, that indivisible point which studs the length of infinite line
Whose ends are nowhere, is thine all, the puny all thou callest thine.
“In philosophy, as in politics, the longest distance between two points is a straight line.”
Source: The Story of Philosophy: The Lives and Opinions of the World's Greatest Philosophers
“The straight line is regarded as the shortest distance between two people, as if they were points.”
Nun gilt für die kürzeste Verbindung zwischen zwei Personen die Gerade, so als ob sie Punkte wären.
E. Jephcott, trans. (1974), § 20
Minima Moralia (1951)
Sind wirklich im ganzen unendlichen Raum Sonnen vorhanden, sie mögen nun in ungefähr gleichen Abständen von einander, oder in Milchstrassen-Systeme vertheilt sein, so wird ihre Menge unendlich, und da müsste der ganze Himmel ebenso hell sein, wie die Sonne. Denn jede Linie, die ich mir von unserm Auge gezogen denken kann, wird nothwendig auf irgend einen Fixstern treffen, und also müßte uns jeder Punkt am Himmel Fixsternlicht, also Sonnenlicht zusenden.
Olbers' paradox, expressed in [Ueber die Durchsichtigkeit des Weltraums, Astronomisches Jahrbuch für das Jahr 1826, J. Bode. Berlin, Späthen 1823, 110-121]
Stanza 7.
The Definition of Love (1650-1652)
Geometry as a Branch of Physics (1949)
Geometry as a Branch of Physics (1949)